Staffan G. Svärd
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Staffan G. Svärd.
Science | 2007
Hilary G. Morrison; Andrew G. McArthur; Frances D. Gillin; Stephen B. Aley; Rodney D. Adam; Gary J. Olsen; Aaron A. Best; W. Zacheus Cande; Feng Chen; Michael J. Cipriano; Barbara J. Davids; Scott C. Dawson; Heidi G. Elmendorf; Adrian B. Hehl; Michael E. Holder; Susan M. Huse; Ulandt Kim; Erica Lasek-Nesselquist; Gerard Manning; Anuranjini Nigam; Julie E. J. Nixon; Daniel Palm; Nora Q.E. Passamaneck; Anjali Prabhu; Claudia I. Reich; David S. Reiner; John Samuelson; Staffan G. Svärd; Mitchell L. Sogin
The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardias requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardias genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.
Nature Reviews Microbiology | 2010
Johan Ankarklev; Jon Jerlström-Hultqvist; Emma Ringqvist; Karin Troell; Staffan G. Svärd
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
PLOS Pathogens | 2009
Oscar Franzén; Jon Jerlström-Hultqvist; Elsie Castro; Ellen Sherwood; Johan Ankarklev; David S. Reiner; Daniel Palm; Jan Andersson; Björn Andersson; Staffan G. Svärd
Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16× coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.
The EMBO Journal | 1994
Leif A. Kirsebom; Staffan G. Svärd
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson‐Crick complementarity between two well‐conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme‐substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Ema Kikovska; Staffan G. Svärd; Leif A. Kirsebom
The universally conserved ribonucleoprotein RNase P is involved in the processing of tRNA precursor transcripts. RNase P consists of one RNA and, depending on its origin, a variable number of protein subunits. Catalytic activity of the RNA moiety so far has been demonstrated only for bacterial and some archaeal RNase P RNAs but not for their eukaryotic counterparts. Here, we show that RNase P RNAs from humans and the lower eukaryote Giardia lamblia mediate cleavage of four tRNA precursors and a model RNA hairpin loop substrate in the absence of protein. Compared with bacterial RNase P RNA, the rate of cleavage (kobs) was five to six orders of magnitude lower, whereas the affinity for the substrate (appKd) was reduced ≈20- to 50-fold. We conclude that the RNA-based catalytic activity of RNase P has been preserved during evolution. This finding opens previously undescribed ways to study the role of the different proteins subunits of eukaryotic RNase P.
Veterinary Parasitology | 2010
Marianne Lebbad; Jens G. Mattsson; Bodil Christensson; Bitte Ljungström; Annette Backhans; Jan Andersson; Staffan G. Svärd
Giardia intestinalis is a protozoan parasite that consists of seven genetically distinct assemblages (A to G). Assemblage A and B parasites have been detected in a wide range of animals including humans, while the other assemblages (C to G) appear to have a narrower host range. However, the knowledge about zoonotic transmission of G. intestinalis is limited. To address this question, 114 Giardia isolates from various animals in Sweden including pets, livestock, wildlife and captive non-human primates were investigated by a sequence-based analysis of three genes (beta-giardin, glutamate dehydrogenase and triose phosphate isomerase). Assemblage A infections were detected in nine ruminants, five cats and one dog, while three sheep were infected with both assemblages A and E. Multilocus genotypes (MLGs) were defined for assemblage A, and three of these MLGs have previously been detected in Giardia isolates from humans. The newly described sub-assemblage AIII, until now reported mainly in wild hoofed animals, was found in one cat isolate. Assemblage B occurred in three monkeys, one guinea pig and one rabbit. The rabbit isolate exhibited sequences at all three loci previously detected in human isolates. The non-zoonotic assemblages C, D, E, F or G were found in the remaining 83 G. intestinalis isolates, which were successfully amplified and genotyped, generating a wide variety of both novel and known sub-genotypes. Double peaks in chromatograms were seen in assemblage B, C, D and E isolates but were never observed in assemblage A, F and G isolates, which can reflect differences in allelic sequence divergence. No evidence of genetic exchange between assemblages was detected. The study shows that multilocus genotyping of G. intestinalis is a highly discriminatory and useful tool in the determination of zoonotic sub-groups within assemblage A, but less valuable for subtyping assemblages B, C, D and E due to the high frequency of double peaks in the chromatograms. The obtained data also suggest that zoonotic transmission of assemblages A and B might occur to a limited extent in Sweden.
Molecular and Biochemical Parasitology | 2008
Emma Ringqvist; J.E.Daniel Palm; Hanna Skarin; Adrian B. Hehl; Malin Weiland; Barbara J. Davids; David S. Reiner; William J. Griffiths; Lars Eckmann; Frances D. Gillin; Staffan G. Svärd
Giardia lamblia, an important cause of diarrheal disease, resides in the small intestinal lumen in close apposition to epithelial cells. Since the disease mechanisms underlying giardiasis are poorly understood, elucidating the specific interactions of the parasite with the host epithelium is likely to provide clues to understanding the pathogenesis. Here we tested the hypothesis that contact of Giardia lamblia with intestinal epithelial cells might lead to release of specific proteins. Using established co-culture models, intestinal ligated loops and a proteomics approach, we identified three G. lamblia proteins (arginine deiminase, ornithine carbamoyl transferase and enolase), previously recognized as immunodominant antigens during acute giardiasis. Release was stimulated by cell-cell interactions, since only small amounts of arginine deiminase and enolase were detected in the medium after culturing of G. lamblia alone. The secreted G. lamblia proteins were localized to the cytoplasm and the inside of the plasma membrane of trophozoites. Furthermore, in vitro studies with recombinant arginine deiminase showed that the secreted Giardia proteins can disable host innate immune factors such as nitric oxide production. These results indicate that contact of Giardia with epithelial cells triggers metabolic enzyme release, which might facilitate effective colonization of the human small intestine.
Acta Tropica | 2008
Marianne Lebbad; Johan Ankarklev; Aleyda Tellez; Byron Leiva; Jan Andersson; Staffan G. Svärd
Giardiasis is a major problem in León, Nicaragua, yet despite this no data are available regarding the prevalence of different Giardia genotypes in this area. To address this question, a molecular analysis of Giardia isolates from humans and dogs living in the same area in León, Nicaragua was performed. Giardia isolates from 119 Nicaraguan patients and 8 dogs were successfully genotyped using single and/or nested beta-giardin PCR with subsequent restriction length fragment polymorphism (RFLP) analysis. The analyses of human samples yielded 94 (79%) assemblage B isolates and 25 (21%) assemblage A isolates. Only the non-human-associated assemblages C and D were found in the dog samples. Sixteen isolates with assemblage A pattern, 26 isolates with assemblage B pattern and all dog isolates were further characterized by sequencing the nested beta-giardin PCR product and by molecular analyses of the glutamate dehydrogenase (gdh) gene. Within the study area the assemblage A isolates were highly genetically homogenous, showing only sub-genotypes A2 (n=3) or A3 (n=13) at the beta-giardin locus and AII only at the gdh locus while assemblage B showed a high genetic polymorphism at both loci. Seven different sub-genotypes were identified within 13 of the sequenced assemblage B beta-giardin isolates. The remaining 13 sequenced assemblage B-isolates appeared to contain several different variants of the beta-giardin gene since the chromatograms displayed one to seven double peaks. The gdh sequences showed an even higher polymorphism since only 2 of 26 assemblage B isolates were without double peaks. Two mixed infections between assemblage A and B were found when the gdh gene was analyzed. Polymorphisms were also observed in the dog-associated assemblages C and D, but to a lesser extent than in assemblage B.
BMC Genomics | 2010
Jon Jerlström-Hultqvist; Oscar Franzén; Johan Ankarklev; Feifei Xu; Eva Nohýnková; Jan Andersson; Staffan G. Svärd; Björn Andersson
BackgroundGiardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig.ResultsWe identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes.ConclusionsOur results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.
PLOS Neglected Tropical Diseases | 2011
Marianne Lebbad; Ingvor Petersson; Lillemor Karlsson; Silvia Botero-Kleiven; Jan Andersson; Bo Svenungsson; Staffan G. Svärd
Background Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A–H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. Methodology/Principal Findings Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. Conclusions/Significance This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to help identify possible zoonotic transmission.