Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann-Katherine Carton is active.

Publication


Featured researches published by Ann-Katherine Carton.


Medical Physics | 2005

Validation of MTF measurement for digital mammography quality control

Ann-Katherine Carton; Dirk Vandenbroucke; Luc Struye; Andrew D. A. Maidment; Yen-Hong Kao; Michael Albert; Hilde Bosmans; Guy Marchal

The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method. These images simulated realistic data from clinical digital mammography systems, and contained intrinsic system factors that could affect the MTF accuracy, such as noise, scatter, and flat-field nonuniformities. Our algorithm is not influenced by detector dose variations for MTF accuracy up to 1∕2 the sampling frequency. We investigated several methods for noise reduction, including truncating the supersampled line spread function (LSF), windowing the LSF, applying a local exponential fit to the LSF, and applying a monotonic constraint to the supersampled edge spread function. Only the monotonic constraint did not introduce a systematic error; the other methods could result in MTF underestimation. Overall, our edge method consistently computed MTFs which were in good agreement with the true MTF. The edge method was then applied to images from a commercial storage-phosphor based digital mammography system. The calculated MTF was affected by the size (sides of 2.5, 5, or 10cm) and the composition (lead or tungsten) of the edge device. However, the effects on the MTF were observed only with regard to the low frequency drop (LFD). Scatter nonuniformity was dependent on edge size, and could lead to slight underestimation of LFD. Nevertheless, this negative effect could be minimized by using an edge of 5cm or larger. An edge composed of lead is susceptible to L-fluorescence, which causes overestimation of the LFD. The results of this work are intended to underline the need for clear guidelines if the MTF is to be given a more crucial role in acceptance tests and routine assessment of digital mammography systems: the MTF algorithm and edge object test tool need to be publicly validated.


Radiology | 2009

Breast percent density: estimation on digital mammograms and central tomosynthesis projections.

Predrag R. Bakic; Ann-Katherine Carton; Despina Kontos; Cuiping Zhang; Andrea B. Troxel; Andrew D. A. Maidment

PURPOSE To evaluate inter- and intrareader agreement in breast percent density (PD) estimation on clinical digital mammograms and central digital breast tomosynthesis (DBT) projection images. MATERIALS AND METHODS This HIPAA-compliant study had institutional review board approval; all patients provided informed consent. Breast PD estimation was performed on the basis of anonymized digital mammograms and central DBT projections in 39 women (mean age, 51 years; range, 31-80 years). All women had recently detected abnormalities or biopsy-proved cancers. PD was estimated by three experienced readers on the mediolateral oblique views of the contralateral breasts by using software; each reader repeated the estimation after 2 months. Spearman correlations of inter- and intrareader and intermodality PD estimates, as well as kappa statistics between categoric PD estimates, were computed. RESULTS High correlation (rho = 0.91) was observed between PD estimates on digital mammograms and those on central DBT projections, averaged over all estimations; the corresponding kappa coefficient (0.79) indicated substantial agreement. Mean interreader agreement for PD estimation on central DBT projections (rho = 0.85 +/- 0.05 [standard deviation]) was significantly higher (P < .01) than that for PD estimation on digital mammograms (rho = 0.75 +/- 0.05); the corresponding kappa coefficients indicated substantial (kappa = 0.65 +/- 0.12) and moderate (kappa = 0.55 +/- 0.14) agreement for central DBT projections and digital mammograms, respectively. CONCLUSION High correlation between PD estimates on digital mammograms and those on central DBT projections suggests the latter could be used until a method for PD estimation based on three-dimensional reconstructed images is introduced. Moreover, clinical PD estimation is possible with reduced radiation dose, as each DBT projection was acquired by using about 22% of the dose for a single mammographic projection.


Academic Radiology | 2009

Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study

Despina Kontos; Predrag R. Bakic; Ann-Katherine Carton; Andrea B. Troxel; Emily F. Conant; Andrew D. A. Maidment

RATIONALE AND OBJECTIVES Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superposition, offering superior parenchymal texture visualization compared to mammography. The aim of this study was to investigate the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. MATERIALS AND METHODS DBT and digital mammographic (DM) images of 39 women were analyzed. Texture features, shown in previous studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. The relative performances of the DBT and DM texture features were compared in correlating with two measures of breast cancer risk: (1) the Gail and Claus risk estimates and (2) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. RESULTS No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density than DM features (P < or = .05). When dividing the study population into groups of increasing breast percent density, the DBT texture features appeared to be more discriminative, having regression lines with overall lower P values, steeper slopes, and higher R(2) estimates. CONCLUSION Although preliminary, the results of this study suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation.


Medical Physics | 2009

The effect of scatter and glare on image quality in contrast-enhanced breast imaging using an a-Si/CsI(Tl) full-field flat panel detector

Ann-Katherine Carton; Raymond J. Acciavatti; Johnny Kuo; Andrew D. A. Maidment

The purpose of this study is to evaluate the performance of an antiscatter grid and its potential benefit on image quality for a full-field digital mammography (FFDM) detector geometry at energies typical for temporal subtraction contrast-enhanced (CE) breast imaging. The signal intensities from primary, scatter, and glare were quantified in images acquired with an a-Si/CsI(T1) FFDM detector using a Rh target and a 0.27 mm Cu filter at tube voltages ranging from 35 to 49 kV. Measurements were obtained at the center of the irradiation region of 20-80 mm thick breast-equivalent phantoms. The phantoms were imaged with and without an antiscatter grid. Based on these data, the performance of the antiscatter grid was determined by calculating the primary and scatter transmission factors (T(P) and T(S)) and Bucky factors (Bf). In addition, glare-to-primary ratios (GPRs) and scatter-to-primary ratios (SPRs) were quantified. The effect of the antiscatter grid on the signal-difference-to-noise ratio (SDNR) was also assessed. It was found that T(P) increases with kV but does not depend on the phantom thickness; T(P) values between 0.81 and 0.84 were measured. T(S) increases with kV and phantom thickness; T(S) values between 0.13 and 0.21 were measured. Bf decreases with kV and increases with phantom thickness; Bf ranges from 1.4 to 2.1. GPR is nearly constant, varying from 0.10 to 0.11. SPR without an antiscatter grid (SPR-) ranges from 0.35 to 1.34. SPR- decreases by approximately 9% from 35 to 49 kV for a given phantom thickness and is 3.5 times larger for an 80 mm thick breast-equivalent phantom than for a 20 mm thick breast-equivalent phantom. SPR with an antiscatter grid (SPR+) ranges from 0.06 to 0.31. SPR+ increases by approximately 23% from 35 to 49 kV for a given phantom thickness; SPR+ is four times larger for an 80 mm breast-equivalent phantom than for a 20 mm breast-equivalent phantom. When imaging a 25 mm PMMA plate at the same mean glandular dose with and without an antiscatter grid, the SDNR is 4% greater with a grid than without. For an 75 mm PMMA plate, the SDNR is 20% greater with a grid. In conclusion, at the higher x-ray energy range used for CE-DM and CE-DBT, an antiscatter grid significantly reduces SPR and improves SDNR. These effects are most pronounced for thick breasts.


Medical Imaging 2006: Physics of Medical Imaging | 2006

Quantification for contrast-enhanced digital breast tomosynthesis

Ann-Katherine Carton; Jingjing Li; Michael Albert; Sara Chen; Andrew D. A. Maidment

Digital breast tomosynthesis (DBT) is a tomographic technique in which individual slices through the breast are reconstructed from x-ray projection images acquired over a limited angular range. In contrast-enhanced DBT (CE-DBT) functional information can be observed by administration of an x-ray contrast agent. We have investigated the technical requirements necessary to quantitatively analyze CE-DBT exams. Using a simplified physiological model, a maximum aerial concentration of approximately 2.2 mg iodine/cm2 in a 0.5 cm thick breast lesion is expected when administering 70 ml of 320 mg iodine/ml Visipaque-320®. This corresponds to a small change in x-ray transmission; up to 5% for a 4 cm thick compressed breast. We have modeled CE-DBT acquisition by simulating Rh target x-ray spectra from 40 to 49 kV. Comparison of attenuation data of our simulated and measured spectra were found to agree well. We investigated the effect of scatter, patient motion and temporal stability of the detector on quantifying iodine uptake. These parameters were evaluated by means of experiments and theoretical modeling.


Medical Physics | 2010

Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: I. A theoretical model

Ann-Katherine Carton; Christer Ullberg; Karin Lindman; Raymond J. Acciavatti; Tom Francke; Andrew D. A. Maidment

PURPOSE Dual-energy (DE) iodine contrast-enhanced x-ray imaging of the breast has been shown to identify cancers that would otherwise be mammographically occult. In this article, theoretical modeling was performed to obtain optimally enhanced iodine images for a photon-counting digital breast tomosynthesis (DBT) system using a DE acquisition technique. METHODS In the system examined, the breast is scanned with a multislit prepatient collimator aligned with a multidetector camera. Each detector collects a projection image at a unique angle during the scan. Low-energy (LE) and high-energy (HE) projection images are acquired simultaneously in a single scan by covering alternate collimator slits with Sn and Cu filters, respectively. Sn filters ranging from 0.08 to 0.22 mm thickness and Cu filters from 0.11 to 0.27 mm thickness were investigated. A tube voltage of 49 kV was selected. Tomographic images, hereafter referred to as DBT images, were reconstructed using a shift-and-add algorithm. Iodine-enhanced DBT images were acquired by performing a weighted logarithmic subtraction of the HE and LE DBT images. The DE technique was evaluated for 20-80 mm thick breasts. Weighting factors,wt, that optimally cancel breast tissue were computed. Signal-difference-to-noise ratios (SDNRs) between iodine-enhanced and nonenhanced breast tissue normalized to the square root of the mean glandular dose (MGD) were computed as a function of the fraction of the MGD allocated to the HE images. Peak SDNR/MGD and optimal dose allocations were identified. SDNR/MGD and dose allocations were computed for several practical feasible system configurations (i.e., determined by the number of collimator slits covered by Sn and Cu). A practical system configuration and Sn-Cu filter pair that accounts for the trade-off between SDNR, tube-output, and MGD were selected. RESULTS wt depends on the Sn-Cu filter combination used, as well as on the breast thickness; to optimally cancel 0% with 50% glandular breast tissue, wt values were found to range from 0.46 to 0.72 for all breast thicknesses and Sn-Cu filter pairs studied. The optimal wt values needed to cancel all possible breast tissue glandularites vary by less than 1% for 20 mm thick breasts and 18% for 80 mm breasts. The system configuration where one collimator slit covered by Sn is alternated with two collimator slits covered by Cu delivers SDNR/MGD nearest to the peak value. A reasonable compromise is a 0.16 mm Sn-0.23 mm Cu filter pair, resulting in SDNR values between 1.64 and 0.61 and MGD between 0.70 and 0.53 mGy for 20-80 mm thick breasts at the maximum tube current. CONCLUSIONS A DE acquisition technique for a photon-counting DBT imaging system has been developed and optimized.


Medical Imaging 2007: Physics of Medical Imaging | 2007

Dual-energy subtraction for contrast-enhanced digital breast tomosynthesis

Ann-Katherine Carton; Karin Lindman; Christer Ullberg; Tom Francke; Andrew D. A. Maidment

We have developed a dual-energy subtraction technique for contrast-enhanced breast tomosynthesis. The imaging system consists of 48 photon-counting linear detectors which are precisely aligned with the focal spot of the x-ray source. The x-ray source and the digital detectors are translated across the breast in a continuous linear motion; each linear detector collects an image at a distinct angle. A pre-collimator is positioned above the breast and defines 48 fan-shaped beams, each aligned with a detector. Low- and high-energy images are acquired in a single scan; half of the detectors capture a low-energy beam and half capture a high-energy beam, as alternating fan-beams are filtered to emphasize low and high energies. Imaging was performed with a W-target at 45 and 49 kV. Phantom experiments and theoretical modeling were conducted. Iodine images were produced with weighted logarithmic subtraction. The optimal tissue cancellation factor, wt, was determined based on simultaneous preservation of the iodine signal and suppression of simulated anatomic background. Optimal dose allocation between low- and high-energy images was investigated. Mean glandular doses were restricted to ensure clinical relevance. Unlike other dual-energy approaches, both spectra must have the same peak energy in this system design. We have observed that wt is mainly dependent on filter combination and varies only slightly with kV and breast thickness, thus ensuring a robust clinical implementation. Optimal performance is obtained when the dose fraction allocated to the high energy images ranges from 0.55 to 0.65. Using elemental filters, we have been able to effectively suppress the anatomic background.


Medical Physics | 2004

Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.

Ann-Katherine Carton; Hilde Bosmans; Dirk Vandenbroucke; Geert Souverijns; Chantal Van Ongeval; Octavian Dragusin; Guy Marchal

Characterization of digital mammography systems is often performed by means of contrast-detail curves using a homogeneous phantom with inserts of different sizes and thicknesses. In this article, a more direct measure of the threshold contrast-detail characteristics of microcalcifications in clinical mammograms is proposed, which also takes into account routine processing and display. The proposed method scores the detectability of simulated microcalcifications with known size and aluminum-equivalent thickness. Thickness estimates, based on x-ray transmission coefficients, were first validated for Al particles. The same approach was then applied to associate Al-equivalent thickness with simulated microcalcifications. Thirty-five mammograms of patients were acquired using a full field digital mammography (FFDM) system operating under standard exposure conditions. Different microcalcifications were simulated using templates of real microcalcifications as described in Med. Phys. 30, 2234-2240 (2003). These templates were first modified such that they simulated a template of the same microcalcification for an ideally sharp detector. They were then adjusted for the imaging characteristics of the FFDM, beam quality, and breast thickness. Microcalcification sizes in the image plane ranged from 200 to 800 microm. Their peak Al-equivalent thickness varied between 70 and 1000 microm. Software phantoms were created. They consisted of 0-10 simulated microcalcifications randomly distributed in 2 cm by 2 cm frames embedded within digital mammograms. Routine processing and printing followed. Three experienced radiologists recorded the locations of the microcalcifications, and confidence ratings were given. Free response receiver operating characteristics (FROC) analysis was performed. Using a binary score, the fractions of detected microcalcifications were plotted as a function of equivalent diameter for the different Al-equivalent thicknesses. Pair-wise agreement of the detected microcalcifications was calculated for the different Al-equivalent thickness groups. The FROC curves of each radiologist indicated similar true positive fractions for a given number of false positives per image. One radiologist applied a more conservative scoring. Detected fractions for the different sizes of the microcalcifications showed the same trend for all observers. In addition, the observer with the least FP also detected less microcalcifications. The pair-wise agreement of the detected microcalcifications was good. The average detected fractions were >0.5 for microcalcifications with equivalent diameter >400 microm and Al-equivalent thickness >400 microm. An average detected fraction >0.5 was also seen for microcalcifications with equivalent diameter <400 microm and equivalent thickness >800 microm. The detected fractions of smaller microcalcifications were <0.5. The results obtained with this method indicate that it may be possible to quantify the performance of a digital mammography detector including processing and viewing for the detection of microcalcifications. We hypothesize that the FROC curves and detected fractions of simulated microcalcifications of different sizes reflect the clinical reality.


international conference on digital mammography | 2006

Optimization of contrast-enhanced digital breast tomosynthesis

Ann-Katherine Carton; Jingjing Li; Sara Chen; Emily F. Conant; Andrew D. A. Maidment

Digital breast tomosynthesis (DBT) is a tomographic technique in which individual slices through the breast are reconstructed from x-ray projection images acquired over a limited angular range. In contrast-enhanced DBT (CE-DBT) functional information is observed by administration of an radiographic contrast agent. The uptake of iodine in the breast is very small and causes changes in x-ray transmission that are smaller than 5%. This presents significant technical challenges if quantitative assessment of contrast agent concentration in tissue is desired. We modeled CE-DBT acquisition by simulating x-ray spectra from 40 to 49 kV. Comparison of attenuation data of our simulated and measured spectra were found to agree well. We investigated the effect of patient motion and scatter on iodine uptake. These parameters were evaluated by means of experiments and theoretical modeling.


Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling | 2008

Simulation of tomosynthesis images based on an anthropomorphic software breast tissue phantom

Nicole V. Ruiter; Cuiping Zhang; Predrag R. Bakic; Ann-Katherine Carton; Johnny Kuo; Andrew D. A. Maidment

The aim of this work is to provide a simulation framework for generation of synthetic tomosynthesis images to be used for evaluation of future developments in the field of tomosynthesis. An anthropomorphic software tissue phantom was previously used in a number of applications for evaluation of acquisition modalities and image post-processing algorithms for mammograms. This software phantom has been extended for similar use with tomosynthesis. The new features of the simulation framework include a finite element deformation model to obtain realistic mammographic deformation and projection simulation for a variety of tomosynthesis geometries. The resulting projections are provided in DICOM format to be applicable for clinically applied reconstruction algorithms. Examples of simulations using parameters of a currently applied clinical setup are presented. The overall simulation model is generic, allowing multiple degrees of freedom to cover anatomical variety in the amount of glandular tissue, degrees of compression, material models for breast tissues, and tomosynthesis geometries.

Collaboration


Dive into the Ann-Katherine Carton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Predrag R. Bakic

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hilde Bosmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Despina Kontos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emily F. Conant

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Guy Marchal

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Michael Albert

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Geert Souverijns

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Cuiping Zhang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Chantal Van Ongeval

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge