Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann L. Griffen is active.

Publication


Featured researches published by Ann L. Griffen.


Journal of Clinical Microbiology | 2002

Molecular Analysis of Bacterial Species Associated with Childhood Caries

Mitzi R. Becker; Bruce J. Paster; Melvin L. Moeschberger; Sarah G. Kenyon; Jamie L. Galvin; Susan K. Boches; Floyd E. Dewhirst; Ann L. Griffen

ABSTRACT Although substantial epidemiologic evidence links Streptococcusmutans to caries, the pathobiology of caries may involve more complex communities of bacterial species. Molecular methods for bacterial identification and enumeration now make it possible to more precisely study the microbiota associated with dental caries. The purpose of this study was to compare the bacteria found in early childhood caries (ECC) to those found in caries-free children by using molecular identification methods. Cloning and sequencing of bacterial 16S ribosomal DNAs from a healthy subject and a subject with ECC were used for identification of novel species or uncultivated phylotypes and species not previously associated with dental caries. Ten novel phylotypes were identified. A number of species or phylotypes that may play a role in health or disease were identified and warrant further investigation. In addition, quantitative measurements for 23 previously known bacterial species or species groups were obtained by a reverse capture checkerboard assay for 30 subjects with caries and 30 healthy controls. Significant differences were observed for nine species: S. sanguinis was associated with health and, in order of decreasing cell numbers, Actinomycesgerencseriae, Bifidobacterium, S. mutans, Veillonella, S. salivarius, S. constellatus, S. parasanguinis, and Lactobacillusfermentum were associated with caries. These data suggest that A. gerencseriae and other Actinomyces species may play an important role in caries initiation and that a novel Bifidobacterium may be a major pathogen in deep caries. Further investigation could lead to the identification of targets for biological interventions in the caries process and thereby contribute to improved prevention of and treatment for this significant public health problem.


Journal of Clinical Microbiology | 2008

Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults

Jørn A. Aas; Ann L. Griffen; Sara R. Dardis; Alice M. Lee; Ingar Olsen; Floyd E. Dewhirst; Bruce J. Paster

ABSTRACT Although Streptococcus mutans has been implicated as a major etiological agent of dental caries, our cross-sectional preliminary study indicated that 10% of subjects with rampant caries in permanent teeth do not have detectable levels of S. mutans. Our aims were to use molecular methods to detect all bacterial species associated with caries in primary and permanent teeth and to determine the bacterial profiles associated with different disease states. Plaque was collected from 39 healthy controls and from intact enamel and white-spot lesions, dentin lesions, and deep-dentin lesions in each of 51 subjects with severe caries. 16S rRNA genes were PCR amplified, cloned, and sequenced to determine species identities. In a reverse-capture checkerboard assay, 243 samples were analyzed for 110 prevalent bacterial species. A sequencing analysis of 1,285 16S rRNA clones detected 197 bacterial species/phylotypes, of which 50% were not cultivable. Twenty-two new phylotypes were identified. PROC MIXED tests revealed health- and disease-associated species. In subjects with S. mutans, additional species, e.g., species of the genera Atopobium, Propionibacterium, and Lactobacillus, were present at significantly higher levels than those of S. mutans. Lactobacillus spp., Bifidobacterium dentium, and low-pH non-S. mutans streptococci were predominant in subjects with no detectable S. mutans. Actinomyces spp. and non-S. mutans streptococci were predominant in white-spot lesions, while known acid producers were found at their highest levels later in disease. Bacterial profiles change with disease states and differ between primary and secondary dentitions. Bacterial species other than S. mutans, e.g., species of the genera Veillonella, Lactobacillus, Bifidobacterium, and Propionibacterium, low-pH non-S. mutans streptococci, Actinomyces spp., and Atopobium spp., likely play important roles in caries progression.


Journal of Dental Research | 2003

New Bacterial Species Associated with Chronic Periodontitis

Purnima S. Kumar; Ann L. Griffen; J.A. Barton; Bruce J. Paster; Melvin L. Moeschberger

Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.


The ISME Journal | 2012

Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing.

Ann L. Griffen; Clifford J. Beall; James H. Campbell; Noah D. Firestone; Purnima S. Kumar; Zamin K. Yang; Mircea Podar

Periodontitis has a polymicrobial etiology within the framework of a complex microbial ecosystem. With advances in sequencing technologies, comprehensive studies to elucidate bacterial community differences have recently become possible. We used 454 sequencing of 16S rRNA genes to compare subgingival bacterial communities from 29 periodontally healthy controls and 29 subjects with chronic periodontitis. Amplicons from both the V1-2 and V4 regions of the 16S gene were sequenced, yielding 1 393 579 sequences. They were identified by BLAST against a curated oral 16S database, and mapped to 16 phyla, 106 genera, and 596 species. 81% of sequences could be mapped to cultivated species. Differences between health- and periodontitis-associated bacterial communities were observed at all phylogenetic levels, and UniFrac and principal coordinates analysis showed distinct community profiles in health and disease. Community diversity was higher in disease, and 123 species were identified that were significantly more abundant in disease, and 53 in health. Spirochaetes, Synergistetes and Bacteroidetes were more abundant in disease, whereas the Proteobacteria were found at higher levels in healthy controls. Within the phylum Firmicutes, the class Bacilli was health-associated, whereas the Clostridia, Negativicutes and Erysipelotrichia were associated with disease. These results implicate a number of taxa that will be targets for future research. Some, such as Filifactor alocis and many Spirochetes were represented by a large fraction of sequences as compared with previously identified targets. Elucidation of these differences in community composition provides a basis for further understanding the pathogenesis of periodontitis.


Journal of Clinical Microbiology | 2005

Identification of Candidate Periodontal Pathogens and Beneficial Species by Quantitative 16S Clonal Analysis

Purnima S. Kumar; Ann L. Griffen; Melvin L. Moeschberger

ABSTRACT Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted DNA approaches, and so it is likely that pathogens remain undiscovered. The purpose of this study was to use culture-independent, quantitative analysis of biofilms associated with chronic periodontitis and periodontal health to identify pathogens and beneficial species. Samples from subjects with periodontitis and controls were analyzed using ribosomal 16S cloning and sequencing. Several genera, many of them uncultivated, were associated with periodontitis, the most numerous of which were gram positive, including Peptostreptococcus and Filifactor. The genera Megasphaera and Desulfobulbus were elevated in periodontitis, and the levels of several species or phylotypes of Campylobacter, Selenomonas, Deferribacteres, Dialister, Catonella, Tannerella, Streptococcus, Atopobium, Eubacterium, and Treponema were elevated in disease. Streptococcus and Veillonella spp. were found in high numbers in all samples and accounted for a significantly greater fraction of the microbial community in healthy subjects than in those with periodontitis. The microbial profile of periodontal health also included the less-abundant genera Campylobacter, Abiotrophia, Gemella, Capnocytophaga, and Neisseria. These newly identified candidates outnumbered Porphyromonas gingivalis and other species previously implicated as periodontopathogens, and it is not clear if newly identified and more numerous species may play a more important role in pathogenesis. Finally, more differences were found in the bacterial profile between subjects with periodontitis and healthy subjects than between deep and shallow sites within the same subject. This suggests that chronic periodontitis is the result of a global perturbation of the oral bacterial ecology rather than a disease-site specific microbial shift.


Journal of Clinical Microbiology | 2006

Changes in Periodontal Health Status Are Associated with Bacterial Community Shifts as Assessed by Quantitative 16S Cloning and Sequencing

Purnima S. Kumar; Jennifer M. Bryk; Francisco J. Martinez; Melvin L. Moeschberger; Ann L. Griffen

ABSTRACT The gingival sulcus contains a complex ecosystem that includes many uncultivated bacteria. Understanding the dynamics of this ecosystem in transitions between health and disease is important in advancing our understanding of the bacterial etiology of periodontitis. The objective of this longitudinal study was to examine the stability of bacterial colonization in the gingival crevice and to explore the relationship between shifts in microbial composition and changes in periodontal health status using a comprehensive, quantitative, culture-independent approach. Subgingival plaque samples and periodontal data were collected from 24 subjects over 2 years. Baseline and 2-year plaque samples were analyzed using quantitative ribosomal 16S cloning and sequencing. Ten subjects remained periodontally healthy over 2 years, the periodontal health of seven subjects worsened, and seven subjects showed clinical improvement. Bacterial stability was greatest among healthy, clinically stable subjects and lowest for subjects whose periodontal status worsened (P = 0.01). Higher numbers of species lost or gained were also observed for subjects whose clinical status changed (P = 0.009). This provides evidence that a change in periodontal status is accompanied by shifts within the bacterial community. Based on these data, measures of microbial stability may be useful in clinical diagnosis and prognosis. Regarding individual species, increases in levels of the uncultivated phylotype Veillonella sp. oral clone X042, a gram-negative bacterium and the most common member of the subgingival bacterial community, were associated with periodontal health (P = 0.04), suggesting that this is an important beneficial species. Filifactor alocis, a gram-positive anaerobe, was found at higher levels in subjects with disease (P = 0.01).


Journal of Clinical Microbiology | 2010

Bacterial 16S Sequence Analysis of Severe Caries in Young Permanent Teeth

Erin L. Gross; Stephen R. Gasparovich; Noah D. Firestone; Judith A. Schwartzbaum; Daniel Janies; Kashmira Asnani; Ann L. Griffen

ABSTRACT Previous studies have confirmed the association of the acid producers Streptococcus mutans and Lactobacillus spp. with childhood caries, but they also suggested these microorganisms are not sufficient to explain all cases of caries. In addition, health-associated bacterial community profiles are not well understood, including the importance of base production and acid catabolism in pH homeostasis. The bacterial community composition in health and in severe caries of the young permanent dentition was compared using Sanger sequencing of the ribosomal 16S rRNA genes. Lactobacillus species were dominant in severe caries, and levels rose significantly as caries progressed from initial to deep lesions. S. mutans was often observed at high levels in the early stages of caries but also in some healthy subjects and was not statistically significantly associated with caries progression in the overall model. Lactobacillus or S. mutans was found either at low levels or not present in several samples. Other potential acid producers observed at high levels in these subjects included strains of Selenomonas, Neisseria, and Streptococcus mitis. Propionibacterium FMA5 was significantly associated with caries progression but was not found at high levels. An overall loss of community diversity occurred as caries progressed, and species that significantly decreased included the Streptococcus mitis-S. pneumoniae-S. infantis group, Corynebacterium matruchotii, Streptococcus gordonii, Streptococcus cristatus, Capnocytophaga gingivalis, Eubacterium IR009, Campylobacter rectus, and Lachnospiraceae sp. C1. The relationship of acid-base metabolism to 16S rRNA gene-based species assignments appears to be complex, and metagenomic approaches that would allow functional profiling of entire genomes will be helpful in elucidating the microbial pathogenesis of caries.


PLOS ONE | 2012

Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

Erin L. Gross; Clifford J. Beall; Stacey R. Kutsch; Noah D. Firestone; Ann L. Griffen

Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have implications for bacterial community resilience and the restoration of oral health.


PLOS ONE | 2011

CORE: A Phylogenetically-Curated 16S rDNA Database of the Core Oral Microbiome

Ann L. Griffen; Clifford J. Beall; Noah D. Firestone; Erin L. Gross; James Michael DiFranco; Jori Hardman; Bastienne Vriesendorp; Russell A. Faust; Daniel Janies

Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of these communities. For this purpose, a phylogenetically curated 16S rDNA database of the core oral microbiome, CORE, was developed. The goal was to include a comprehensive and minimally redundant representation of the bacteria that regularly reside in the human oral cavity with computationally robust classification at the level of species and genus. Clades of cultivated and uncultivated taxa were formed based on sequence analyses using multiple criteria, including maximum-likelihood-based topology and bootstrap support, genetic distance, and previous naming. A number of classification inconsistencies for previously named species, especially at the level of genus, were resolved. The performance of the CORE database for identifying clinical sequences was compared to that of three publicly available databases, GenBank nr/nt, RDP and HOMD, using a set of sequencing reads that had not been used in creation of the database. CORE offered improved performance compared to other public databases for identification of human oral bacterial 16S sequences by a number of criteria. In addition, the CORE database and phylogenetic tree provide a framework for measures of community divergence, and the focused size of the database offers advantages of efficiency for BLAST searching of large datasets. The CORE database is available as a searchable interface and for download at http://microbiome.osu.edu.


Pediatric Clinics of North America | 2000

Dental caries: An infectious and transmissible disease

Page W. Caufield; Ann L. Griffen

By definition, dental caries is an infectious and transmissible disease because it is caused by bacteria colonizing the tooth surfaces. Unlike most infectious diseases affecting humans, caries is the result of an imbalance of the indigenous oral biota rather than a nonindigenous, exogenous pathogen. The introduction of refined sugar into modern societys diet has tipped the balance from health to disease. New insight into the natural history of the leading cariogenic bacteria, the mutans streptococci, may contribute ways to control or prevent this infectious disease. Here, we use the host-parasite model as a platform for viewing the pathogenicity of the caries process in contrast to other infectious diseases.

Collaboration


Dive into the Ann L. Griffen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mircea Podar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alisha G. Campbell

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge