Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mircea Podar is active.

Publication


Featured researches published by Mircea Podar.


Nature | 2007

Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite

Falk Warnecke; Peter Luginbühl; Natalia Ivanova; Majid Ghassemian; Toby Richardson; Justin T. Stege; Michelle Cayouette; Alice C. McHardy; Gordana Djordjevic; Nahla Aboushadi; Rotem Sorek; Susannah G. Tringe; Mircea Podar; Hector Garcia Martin; Victor Kunin; Daniel Dalevi; Julita Madejska; Edward Kirton; Darren Platt; Ernest Szeto; Asaf Salamov; Kerrie Barry; Natalia Mikhailova; Nikos C. Kyrpides; Eric G. Matson; Elizabeth A. Ottesen; Xinning Zhang; Myriam Hernández; Catalina Murillo; Luis G. Acosta

From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding ‘higher’ Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-μl environment can be.


The ISME Journal | 2012

Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing.

Ann L. Griffen; Clifford J. Beall; James H. Campbell; Noah D. Firestone; Purnima S. Kumar; Zamin K. Yang; Mircea Podar

Periodontitis has a polymicrobial etiology within the framework of a complex microbial ecosystem. With advances in sequencing technologies, comprehensive studies to elucidate bacterial community differences have recently become possible. We used 454 sequencing of 16S rRNA genes to compare subgingival bacterial communities from 29 periodontally healthy controls and 29 subjects with chronic periodontitis. Amplicons from both the V1-2 and V4 regions of the 16S gene were sequenced, yielding 1 393 579 sequences. They were identified by BLAST against a curated oral 16S database, and mapped to 16 phyla, 106 genera, and 596 species. 81% of sequences could be mapped to cultivated species. Differences between health- and periodontitis-associated bacterial communities were observed at all phylogenetic levels, and UniFrac and principal coordinates analysis showed distinct community profiles in health and disease. Community diversity was higher in disease, and 123 species were identified that were significantly more abundant in disease, and 53 in health. Spirochaetes, Synergistetes and Bacteroidetes were more abundant in disease, whereas the Proteobacteria were found at higher levels in healthy controls. Within the phylum Firmicutes, the class Bacilli was health-associated, whereas the Clostridia, Negativicutes and Erysipelotrichia were associated with disease. These results implicate a number of taxa that will be targets for future research. Some, such as Filifactor alocis and many Spirochetes were represented by a large fraction of sequences as compared with previously identified targets. Elucidation of these differences in community composition provides a basis for further understanding the pathogenesis of periodontitis.


Science | 2013

The Genetic Basis for Bacterial Mercury Methylation

Jerry M. Parks; Alexander Johs; Mircea Podar; Romain Bridou; Richard A. Hurt; Steven D. Smith; Stephen J. Tomanicek; Yun Qian; Steven D. Brown; Craig C. Brandt; Anthony V. Palumbo; Jeremy C. Smith; Judy D. Wall; Dwayne A. Elias; Liyuan Liang

Mercury Methylating Microbes Mercury (Hg) most commonly becomes bioavailable and enters the food web as the organic form methylmercury, where it induces acute toxicity effects that can be magnified up the food chain. But most natural and anthropogenic Hg exists as inorganic Hg2+ and is only transformed into methylmercury by anaerobic microorganisms—typically sulfur-reducing bacteria. Using comparative genomics, Parks et al. (p. 1332, published online 7 February; see the Perspective by Poulain and Barkay) identified two genes that encode a corrinoid and iron-sulfur proteins in six known Hg-methylating bacteria but were absent in nonmethylating bacteria. In two distantly related model Hg-methylating bacteria, deletion of either gene—or both genes simultaneously—reduced the ability for the bacteria to produce methylmercury but did not impair cellular growth. The presence of this two-gene cluster in several other bacterial and lineages for which genome sequences are available suggests the ability to produce methylmercury may be more broadly distributed in the microbial world than previously recognized. A two-gene cluster encodes proteins required for the production of the neurotoxin methylmercury in bacteria. [Also see Perspective by Poulain and Barkay] Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.


Environmental Science & Technology | 2013

Mercury Methylation by Novel Microorganisms from New Environments

Cynthia C. Gilmour; Mircea Podar; Allyson L. Bullock; Andrew M. Graham; Steven D. Brown; Anil C. Somenahally; Alexander Johs; Richard A. Hurt; Kathryn L. Bailey; Dwayne A. Elias

Microbial mercury (Hg) methylation transforms a toxic trace metal into the highly bioaccumulated neurotoxin methylmercury (MeHg). The lack of a genetic marker for microbial MeHg production has prevented a clear understanding of Hg-methylating organism distribution in nature. Recently, a specific gene cluster (hgcAB) was linked to Hg methylation in two bacteria.1 Here we test if the presence of hgcAB orthologues is a reliable predictor of Hg methylation capability in microorganisms, a necessary confirmation for the development of molecular probes for Hg-methylation in nature. Although hgcAB orthologues are rare among all available microbial genomes, organisms are much more phylogenetically and environmentally diverse than previously thought. By directly measuring MeHg production in several bacterial and archaeal strains encoding hgcAB, we confirmed that possessing hgcAB predicts Hg methylation capability. For the first time, we demonstrated Hg methylation in a number of species other than sulfate- (SRB) and iron- (FeRB) reducing bacteria, including methanogens, and syntrophic, acetogenic, and fermentative Firmicutes. Several of these species occupy novel environmental niches for Hg methylation, including methanogenic habitats such as rice paddies, the animal gut, and extremes of pH and salinity. Identification of these organisms as Hg methylators now links methylation to discrete gene markers in microbial communities.


Applied and Environmental Microbiology | 2011

Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types.

Neil R. Gottel; Hector F. Castro; Marilyn K. Kerley; Zamin Yang; Dale A. Pelletier; Mircea Podar; Tatiana V. Karpinets; Ed Uberbacher; Gerald A. Tuskan; Rytas Vilgalys; Mitchel J. Doktycz; Christopher W. Schadt

ABSTRACT The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A korarchaeal genome reveals insights into the evolution of the Archaea

James G. Elkins; Mircea Podar; David E. Graham; Kira S. Makarova; Yuri I. Wolf; Lennart Randau; Brian P. Hedlund; Céline Brochier-Armanet; Victor Kunin; Iain Anderson; Alla Lapidus; Eugene Goltsman; Kerrie Barry; Eugene V. Koonin; Philip Hugenholtz; Nikos C. Kyrpides; Gerhard Wanner; Paul G. Richardson; Martin Keller; Karl O. Stetter

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, “Candidatus Korarchaeum cryptofilum,” which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Applied and Environmental Microbiology | 2006

Environmental whole-genome amplification to access microbial populations in contaminated sediments

Carl B. Abulencia; D.L. Wyborski; Joseph Garcia; Mircea Podar; Wenqiong Chen; Sherman H. Chang; Hwai W. Chang; David B. Watson; Eoin L. Brodie; Terry C. Hazen; Martin Keller

ABSTRACT Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using φ29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and “clusters of orthologous groups” (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.


Applied and Environmental Microbiology | 2004

Exploring nitrilase sequence space for enantioselective catalysis.

Dan E. Robertson; Jennifer Ann Chaplin; Grace DeSantis; Mircea Podar; Mark Madden; Ellen Chi; Toby Richardson; Aileen Milan; Mark E. Miller; David P. Weiner; Kelvin Wong; Jeff McQuaid; Bob Farwell; Lori Preston; Xuqiu Tan; Marjory A. Snead; Martin S. Keller; Eric J. Mathur; Patricia L. Kretz; Mark J. Burk; Jay M. Short

ABSTRACT Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 106 to 1010 members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.


Applied and Environmental Microbiology | 2007

Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities

Mircea Podar; Carl B. Abulencia; Marion Walcher; Don Hutchison; Karsten Zengler; Joseph Garcia; Trevin Holland; David Cotton; Loren Hauser; Martin S. Keller

ABSTRACT Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequencies, especially those representing yet-uncultured taxa, which include the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms isolated directly from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the communitys metabolic potential.


Genome Biology | 2013

Biogeography of the ecosystems of the healthy human body

Yanjiao Zhou; Hongyu Gao; Kathie A. Mihindukulasuriya; Patricio S. La Rosa; Kristine M. Wylie; Tatiana A. Vishnivetskaya; Mircea Podar; Barb Warner; Phillip I. Tarr; David E. Nelson; J. Dennis Fortenberry; Martin J. Holland; Sarah E. Burr; William D. Shannon; Erica Sodergren; George M. Weinstock

BackgroundCharacterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans.ResultsWe identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity. The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual. The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern, emphasizing the significance of standardization of metagenomic studies.ConclusionsThe data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing.

Collaboration


Dive into the Mircea Podar's collaboration.

Top Co-Authors

Avatar

Anthony V. Palumbo

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven D. Brown

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dwayne A. Elias

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig C. Brandt

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer J. Mosher

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip S. Perlman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Elkins

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge