Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Louise Walker is active.

Publication


Featured researches published by Ann Louise Walker.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A).

Jonathan Thomas Seal; Yann Lamotte; Frédéric Donche; Anne Marie Jeanne Bouillot; Olivier Mirguet; Francoise Jeanne Gellibert; Edwige Nicodeme; Gael Krysa; Jorge Kirilovsky; Soren Beinke; Scott McCleary; Inma Rioja; Paul Bamborough; Chun-wa Chung; Laurie J. Gordon; Toni Lewis; Ann Louise Walker; Leanne Cutler; David Lugo; David M. Wilson; Jason Witherington; Kevin Lee; Rab K. Prinjha

A novel series of quinoline isoxazole BET family bromodomain inhibitors are discussed. Crystallography is used to illustrate binding modes and rationalize their SAR. One member, I-BET151 (GSK1210151A), shows good oral bioavailability in both the rat and minipig as well as demonstrating efficient suppression of bacterial induced inflammation and sepsis in a murine in vivo endotoxaemia model.


Journal of Medicinal Chemistry | 2014

The Discovery of I-Bet726 (Gsk1324726A), a Potent Tetrahydroquinoline Apoa1 Up-Regulator and Selective Bet Bromodomain Inhibitor.

Romain Luc Marie Gosmini; Van Loc Nguyen; Jérôme Toum; Christophe Simon; Jean-Marie Brusq; Gael Krysa; Olivier Mirguet; Alizon M. Riou-Eymard; Eric Boursier; Lionel Trottet; Paul Bamborough; Hugh F. Clark; Chun-wa Chung; Leanne Cutler; Emmanuel Hubert Demont; Rejbinder Kaur; Antonia Lewis; Mark B. Schilling; Peter E. Soden; Simon Taylor; Ann Louise Walker; Matthew D. Walker; Rab K. Prinjha; Edwige Nicodeme

Through their function as epigenetic readers of the histone code, the BET family of bromodomain-containing proteins regulate expression of multiple genes of therapeutic relevance, including those involved in tumor cell growth and inflammation. BET bromodomain inhibitors have profound antiproliferative and anti-inflammatory effects which translate into efficacy in oncology and inflammation models, and the first compounds have now progressed into clinical trials. The exciting biology of the BETs has led to great interest in the discovery of novel inhibitor classes. Here we describe the identification of a novel tetrahydroquinoline series through up-regulation of apolipoprotein A1 and the optimization into potent compounds active in murine models of septic shock and neuroblastoma. At the molecular level, these effects are produced by inhibition of BET bromodomains. X-ray crystallography reveals the interactions explaining the structure-activity relationships of binding. The resulting lead molecule, I-BET726, represents a new, potent, and selective class of tetrahydroquinoline-based BET inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor.

John Liddle; Francis Louis Atkinson; Michael David Barker; Paul S. Carter; Neil R. Curtis; Robert P. Davis; Clement Douault; Marion C. Dickson; Dorothy Elwes; Neil Stuart Garton; Matthew Gray; Thomas G. Hayhow; Clare I. Hobbs; Emma Jones; Stuart G. Leach; Karen Leavens; Huw D. Lewis; Scott McCleary; Margarete Neu; Vipulkumar Kantibhai Patel; Alex G.S. Preston; Cesar Ramirez-Molina; Tracy Jane Shipley; Philip Alan Skone; Nick Smithers; Donald O. Somers; Ann Louise Walker; Robert J. Watson; Gordon G. Weingarten

The lead optimisation of the diaminopyrimidine carboxamide series of spleen tyrosine kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over liability kinases and hERG activity. GSK143 is a potent and highly selective SYK inhibitor showing good efficacy in the rat Arthus model.


Bioorganic & Medicinal Chemistry Letters | 2008

Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes

Richard Martyn Angell; Tony D. Angell; Paul Bamborough; Mark J. Bamford; Chun-wa Chung; Stuart Cockerill; Stephen Flack; Katherine Louise Jones; Dramane I. Laine; Timothy Longstaff; Steve Ludbrook; Rosannah Pearson; Kathryn J. Smith; Penny A. Smee; Don O. Somers; Ann Louise Walker

The biphenyl amides (BPAs) are a series of p38alpha MAP kinase inhibitors. Compounds are able to bind to the kinase in either the DFG-in or DFG-out conformation, depending on substituents. X-ray, binding, kinetic and cellular data are shown, providing the most detailed comparison to date between potent compounds from the same chemical series that bind to different p38alpha conformations. DFG-out-binding compounds could be made more potent than DFG-in-binding compounds by increasing their size. Unexpectedly, compounds that bound to the DGF-out conformation showed diminished selectivity. The kinetics of binding to the isolated enzyme and the effects of compounds on cells were largely unaffected by the kinase conformation bound.


Bioorganic & Medicinal Chemistry Letters | 2008

Biphenyl amide p38 kinase inhibitors 3: Improvement of cellular and in vivo activity.

Richard Martyn Angell; Nicola Mary Aston; Paul Bamborough; Jacky B. Buckton; Stuart Cockerill; Suzanne J. deBoeck; Chris D. Edwards; Duncan S. Holmes; Katherine Louise Jones; Dramane I. Laine; Shila Patel; Penny A. Smee; Kathryn J. Smith; Don O. Somers; Ann Louise Walker

The biphenyl amides (BPAs) are a novel series of p38alpha MAP kinase inhibitor. The optimisation of the series to give compounds that are potent in an in vivo disease model is discussed. SAR is presented and rationalised with reference to the crystallographic binding mode.


Nature Medicine | 2016

Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

Damian J. Mole; Scott P. Webster; Iain Uings; Xiaozhong Zheng; Margaret Binnie; Kris Wilson; Jonathan P. Hutchinson; Olivier Mirguet; Ann Louise Walker; Benjamin Beaufils; Nicolas Ancellin; Lionel Trottet; Véronique Bénéton; Christopher G. Mowat; Martin Wilkinson; Paul Rowland; Carl Haslam; Andrew McBride; Natalie Homer; James Baily; Matthew Sharp; O. James Garden; Jeremy Hughes; Sarah E. M. Howie; Duncan S. Holmes; John Liddle; John P. Iredale

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.


Journal of Medicinal Chemistry | 2009

p38alpha mitogen-activated protein kinase inhibitors: optimization of a series of biphenylamides to give a molecule suitable for clinical progression.

Nicola Mary Aston; Paul Bamborough; Jacqueline B. Buckton; Chris D. Edwards; Duncan S. Holmes; Katherine Louise Jones; Vipulkumar Kantibhai Patel; Penny A. Smee; Donald O. Somers; Giovanni Vitulli; Ann Louise Walker

p38alpha MAP kinase is a key anti-inflammatory target for rheumatoid arthritis, influencing biosynthesis of pro-inflammatory cytokines TNFalpha and IL-1beta at a translational and transcriptional level. In this paper, we describe how we have optimized a series of novel p38alpha/beta inhibitors using crystal structures of our inhibitors bound to p38alpha, classical medicinal chemistry, and modeling of virtual libraries to derive a molecule suitable for progression into clinical development.


Nature Communications | 2017

Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase.

Jonathan P. Hutchinson; Paul Rowland; Mark Taylor; Erica Christodoulou; Carl Haslam; Clare I. Hobbs; Duncan S. Holmes; Paul Homes; John Liddle; Damian J. Mole; Iain Uings; Ann Louise Walker; Scott P. Webster; Christopher G. Mowat; Chun-wa Chung

Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntingtons and Alzheimers. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.


Journal of Medicinal Chemistry | 2017

Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis

Ann Louise Walker; Nicolas Ancellin; Benjamin Beaufils; Marylise Bergeal; Margaret Binnie; Anne Marie Jeanne Bouillot; David E. Clapham; Alexis Denis; Carl Haslam; Duncan S. Holmes; Jonathan P. Hutchinson; John Liddle; Andrew McBride; Olivier Mirguet; Christopher G. Mowat; Paul Rowland; Nathalie Tiberghien; Lionel Trottet; Iain Uings; Scott P. Webster; Xiaozhong Zheng; Damian J. Mole

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntingtons disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.


Bioorganic & Medicinal Chemistry Letters | 2017

The discovery of potent and selective kynurenine 3-monooxygenase inhibitors for the treatment of acute pancreatitis

John Liddle; Benjamin Beaufils; Margaret Binnie; Anne Marie Jeanne Bouillot; Alexis Denis; Michael M. Hann; Carl Haslam; Duncan S. Holmes; Jon P. Hutchinson; Michael Kranz; Andrew McBride; Olivier Mirguet; Damian J. Mole; Christopher G. Mowat; Sandeep Pal; Paul Rowland; Lionel Trottet; Iain Uings; Ann Louise Walker; Scott P. Webster

A series of potent, competitive and highly selective kynurenine monooxygenase inhibitors have been discovered via a substrate-based approach for the treatment of acute pancreatitis. The lead compound demonstrated good cellular potency and clear pharmacodynamic activity in vivo.

Collaboration


Dive into the Ann Louise Walker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge