Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Bamford is active.

Publication


Featured researches published by Mark J. Bamford.


Journal of Cerebral Blood Flow and Metabolism | 2002

Role of Mitogen- and Stress-Activated Kinases in Ischemic Injury

Elaine Irving; Mark J. Bamford

Protein kinase-mediated signaling cascades constitute the major route by which cells respond to their extracellular environment. Of these, three well-characterized mitogen-activated protein kinase (MAPK) signaling pathways are those that use the extracellular signal-regulated kinase (ERK1/2) or the stress-activated protein kinase (p38/SAPK2 or JNK/SAPK) pathways. Mitogenic stimulation of the MAPK-ERK1/2 pathway modulates the activity of many transcription factors, leading to biological responses such as proliferation and differentiation. In contrast, the p38/SAPK2 and JNK/SAPK (c-Jun amino-terminal kinase/stress-activated protein kinase) pathways are only weakly, if at all, activated by mitogens, but are strongly activated by stress stimuli. There is now a growing body of evidence showing that these kinase signaling pathways become activated following a variety of injury stimuli including focal cerebral ischemia. Whether their activation, however, is merely an epiphenomenon of the process of cell death, or is actually involved in the mechanisms underlying ischemia-induced degeneration, remains to be fully understood. This review provides an overview of the current understanding of kinase pathway activation following cerebral ischemia and discusses the evidence supporting a role for these kinases in the mechanisms underlying ischemia-induced cell death.


Journal of Pharmacology and Experimental Therapeutics | 2006

Novel Rho Kinase Inhibitors with Anti-inflammatory and Vasodilatory Activities

Chris P. Doe; Ross Bentley; David J. Behm; Robert Lafferty; Robert A. Stavenger; David K. Jung; Mark J. Bamford; Terry Panchal; Eugene T. Grygielko; Lois L. Wright; Gary K. Smith; Zunxuan Chen; Christine L. Webb; Sanjay S. Khandekar; Tracey Yi; Robert B. Kirkpatrick; Edward Dul; Larry J. Jolivette; Joseph P. Marino; Robert N. Willette; Dennis Lee; Erding Hu

Increased Rho kinase (ROCK) activity contributes to smooth muscle contraction and regulates blood pressure homeostasis. We hypothesized that potent and selective ROCK inhibitors with novel structural motifs would help elucidate the functional role of ROCK and further explore the therapeutic potential of ROCK inhibition for hypertension. In this article, we characterized two aminofurazan-based inhibitors, GSK269962A [N-(3-{[2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4, 5-c]pyridin-6-yl]oxy}phenyl)-4-{[2-(4-morpholinyl)ethyl]-oxy}benzamide] and SB-7720770-B [4-(7-{[(3S)-3-amino-1-pyrrolidinyl]carbonyl}-1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-amine], as members of a novel class of compounds that potently inhibit ROCK enzymatic activity. GSK269962A and SB-772077-B have IC50 values of 1.6 and 5.6 nM toward recombinant human ROCK1, respectively. GSK269962A also exhibited more than 30-fold selectivity against a panel of serine/threonine kinases. In lipopolysaccharide-stimulated monocytes, these inhibitors blocked the generation of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α. Furthermore, both SB-772077-B and GSK269962A induced vasorelaxation in preconstricted rat aorta with an IC50 of 39 and 35 nM, respectively. Oral administration of either GSK269962A or SB-772077-B produced a profound dose-dependent reduction of systemic blood pressure in spontaneously hypertensive rats. At doses of 1, 3, and 30 mg/kg, both compounds induced a reduction in blood pressure of approximately 10, 20, and 50 mm Hg. In addition, administration of SB-772077-B also dramatically lowered blood pressure in DOCA salt-induced hypertensive rats. SB-772077-B and GSK269962A represent a novel class of ROCK inhibitors that have profound effects in the vasculature and may enable us to further evaluate the potential beneficial effects of ROCK inhibition in animal models of cardiovascular as well as other chronic diseases.


Bioorganic & Medicinal Chemistry Letters | 2008

Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes

Richard Martyn Angell; Tony D. Angell; Paul Bamborough; Mark J. Bamford; Chun-wa Chung; Stuart Cockerill; Stephen Flack; Katherine Louise Jones; Dramane I. Laine; Timothy Longstaff; Steve Ludbrook; Rosannah Pearson; Kathryn J. Smith; Penny A. Smee; Don O. Somers; Ann Louise Walker

The biphenyl amides (BPAs) are a series of p38alpha MAP kinase inhibitors. Compounds are able to bind to the kinase in either the DFG-in or DFG-out conformation, depending on substituents. X-ray, binding, kinetic and cellular data are shown, providing the most detailed comparison to date between potent compounds from the same chemical series that bind to different p38alpha conformations. DFG-out-binding compounds could be made more potent than DFG-in-binding compounds by increasing their size. Unexpectedly, compounds that bound to the DGF-out conformation showed diminished selectivity. The kinetics of binding to the isolated enzyme and the effects of compounds on cells were largely unaffected by the kinase conformation bound.


Bioorganic & Medicinal Chemistry Letters | 2008

The identification of potent, selective and CNS penetrant furan-based inhibitors of B-Raf kinase

Andrew K. Takle; Mark J. Bamford; Susannah Davies; Robert P. Davis; David Kenneth Dean; Alessandra Gaiba; Elaine Irving; Frank D. King; Antoinette Naylor; Christopher A. Parr; Alison M. Ray; Alastair D. Reith; Beverley Smith; Penelope C. Staton; Jon Graham Anthony Steadman; Tania O. Stean; David M. Wilson

Modification of the potent imidazole-based B-Raf inhibitor SB-590885 resulted in the identification of a series of furan-based derivatives with enhanced CNS penetration. One such compound, SB-699393 (17), was examined in vivo to challenge the hypothesis that selective B-Raf inhibitors may be of value in the treatment of stroke.


Bioorganic & Medicinal Chemistry Letters | 2009

Evaluation of basic, heterocyclic ring systems as templates for use as potassium competitive acid blockers (pCABs).

Terry Panchal; Nicholas Bailey; Mark J. Bamford; Emmanuel Demont; Richard L. Elliott; Irene Farre-Gutierrez; Neil Stuart Garton; Thomas G. Hayhow; Gail Hutley; Antoinette Naylor

A variety of basic, heterocyclic templates has been reported as potassium-competitive, acid pump antagonists. Herein, we report a comparison of potencies of these templates and others to establish which offers the best start point for further systematic optimisation. Modifications were carried out to improve the developability profile of the more potent 1H-pyrrolo[2,3-c]pyridine template, affording molecules with improved overall in vitro characteristics versus the reported clinical candidate AR-H047108, and comparable to the clinically efficacious AZD-0865.


Organic and Biomolecular Chemistry | 2006

The ammonia-free partial reduction of substituted pyridinium salts

Timothy J. Donohoe; Dale J. Johnson; Laura H. Mace; Rhian E. Thomas; Jessica Y. K. Chiu; Jason S. Rodrigues; Richard G. Compton; Craig E. Banks; Peter Tomčík; Mark J. Bamford; Osamu Ichihara

This paper reports a study into the partial reduction of N-alkylpyridinium salts together with subsequent elaboration of the intermediates thus produced. Activation of a pyridinium salt by placing an ester group at C-2, allows the addition of two electrons to give a synthetically versatile enolate intermediate which can be trapped with a variety of electrophiles. Furthermore, the presence of a 4-methoxy substituent on the pyridine nucleus enhances the stability of the enolate reaction products, and hydrolysis in situ gives stable dihydropyridone derivatives in good yields. These versatile compounds are prepared in just three steps from picolinic acid and can be derivatised at any position on the ring, including nitrogen when a p-methoxybenzyl group is used as the N-activating group on the pyridinium salt. This publication describes our exploration of the optimum reducing conditions, the most appropriate N-alkyl protecting group, as well as the best position on the ring for the methoxy group. Electrochemical techniques which mimic the synthetic reducing conditions are utilised and they give clear support for our proposed mechanism of reduction in which there is a stepwise addition of two electrons to the heterocycle, mediated by di-tert-butylbiphenyl (DBB). Moreover, there is a correlation between the viability of reduction of a given heterocycle under synthetic conditions and its electrochemical response; this offers the potential for use of electrochemistry in predicting the outcome of such reactions.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists.

David M. Wilson; James Apps; Nicholas Bailey; Mark J. Bamford; Isabel J. Beresford; Kim Brackenborough; Michael A. Briggs; Stephen J Brough; Andrew R. Calver; Barry Crook; Rebecca K. Davis; Robert P. Davis; Susannah Davis; David Kenneth Dean; Leanne Harris; Teresa Heslop; Vicky Holland; Phillip Jeffrey; Terrance A. Panchal; Christopher A. Parr; Nigel Quashie; Joanne Schogger; Sanjeet Singh Sehmi; Tania O. Stean; Jon Graham Anthony Steadman; Brenda K. Trail; Jeffrey Wald; Angela Worby; Andrew K. Takle; Jason Witherington

This Letter describes the discovery of GSK189254 and GSK239512 that were progressed as clinical candidates to explore the potential of H3 receptor antagonists as novel therapies for the treatment of Alzheimers disease and other dementias. By carefully controlling the physicochemical properties of the benzazepine series and through the implementation of an aggressive and innovative screening strategy that employed high throughput in vivo assays to efficiently triage compounds, the medicinal chemistry effort was able to rapidly progress the benzazepine class of H3 antagonists through to the identification of clinical candidates with robust in vivo efficacy and excellent developability properties.


Bioorganic & Medicinal Chemistry Letters | 2009

Orally active C-6 heteroaryl- and heterocyclyl-substituted imidazo[1,2-a]pyridine acid pump antagonists (APAs).

Nicholas Bailey; Mark J. Bamford; Delphine Brissy; Joanna Brookfield; Emmanuel Demont; Richard L. Elliott; Neil Stuart Garton; Irene Farre-Gutierrez; Thomas G. Hayhow; Gail Hutley; Antoinette Naylor; Terry Panchal; Hui-Xian Seow; David J. Spalding; Andrew K. Takle

Acid pump antagonists (APAs) such as the imidazo[1,2-a]pyridine AZD-0865 2 have proven efficacious at low oral doses in acid related gastric disorders. Herein we describe some of the broader SAR in this class of molecule and detail the discovery of an imidazo[1,2-a]pyridine 15 which has excellent efficacy in animal models of gastric acid secretion following oral administration, as well as a good overall developability profile. The discovery strategy focuses on use of heteroaryl and heterocyclic substituents at the C-6 position and optimization of developability characteristics through modulation of global physico-chemical properties.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of biaryl inhibitors of H+/K+ ATPase

Neil Stuart Garton; Nicholas Bailey; Mark J. Bamford; Emmanuel Demont; Irene Farre-Gutierrez; Gail Hutley; Gianpaolo Bravi; Paula Louise Pickering

We report the identification of a novel biaryl template for H(+)/K(+) ATPase inhibition. Evaluation of critical SAR features within the biaryl imidazole framework and the use of pharmacophore modelling against known imidazopyridine and azaindole templates suggested that the geometry of the molecule is key to achieving activity. Herein we present our work optimising the potency of the molecule through modifications and substitutions to each of the ring systems. In particular sub-micromolar potency is achieved with (4b) presumably through a proposed intramolecular hydrogen bond that ensures the required imidazole basic centre is appropriately located.


Progress in Medicinal Chemistry | 2009

H+/K+ ATPase inhibitors in the treatment of acid-related disorders.

Mark J. Bamford

Publisher Summary This chapter presents the classes of H+/K+ ATPase inhibitors. Acid secretion by the H+/K+ ATPase pump is induced synergistically by three key mediators—gastrin, acetylcholine, and histamine—through interaction with their respective receptors in the parietal cell. Approaches to inhibition of each of these have been actively examined in the chapter with the aim of inhibiting the activation of the parietal cell acid secretion. It is the gastric H+/K+ ATPase proton pump that is the common downstream effector of acid secretion. Its inhibition is, therefore, likely to give the most effective suppression of gastric acid. This is the protein that is the target of the proton–pump inhibitors (PPIs)—such as omeprazole and its analogues. The chapter discusses the two approaches for the inhibition of H+/K+ ATPase—irreversible inhibition and reversible inhibition. The classical irreversible PPIs have been the mainstay of treatment of acid-related disorders. The reversible acid pump antagonists (APAs) are discussed in the chapter. A number of potassium-competitive acid blockers—formerly known as “acid–pump antagonists” or (APAs)—have entered clinical development.

Collaboration


Dive into the Mark J. Bamford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Sean Flack

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge