Ann M. Stevens
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann M. Stevens.
Nature Methods | 2005
Alex Groisman; Caroline Lobo; HoJung Cho; J Kyle Campbell; Yann S. Dufour; Ann M. Stevens; Andre Levchenko
Bacteria and yeast frequently exist as populations capable of reaching extremely high cell densities. With conventional culturing techniques, however, cell proliferation and ultimate density are limited by depletion of nutrients and accumulation of metabolites in the medium. Here we describe design and operation of microfabricated elastomer chips, in which chemostatic conditions are maintained for bacterial and yeast colonies growing in an array of shallow microscopic chambers. Walls of the chambers are impassable for the cells, but allow diffusion of chemicals. Thus, the chemical contents of the chambers are maintained virtually identical to those of the nearby channels with continuous flowthrough of a dynamically defined medium. We demonstrate growth of cell cultures to densely packed ensembles that proceeds exponentially in a temperature-dependent fashion, and we use the devices to monitor colony growth from a single cell and to analyze the cell response to an exogenously added autoinducer.
PLOS Biology | 2007
HoJung Cho; Henrik Jönsson; Kyle Campbell; Pontus Melke; Joshua W Williams; Bruno Jedynak; Ann M. Stevens; Alex Groisman; Andre Levchenko
Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases.
Journal of Bacteriology | 2007
Luis Caetano M. Antunes; Amy L. Schaefer; Rosana B. R. Ferreira; Nan Qin; Ann M. Stevens; Edward G. Ruby; E. Peter Greenberg
The Vibrio fischeri quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL) activates expression of the seven-gene luminescence operon. We used microarrays to unveil 18 additional 3OC6-HSL-controlled genes, 3 of which had been identified by other means previously. We show most of these genes are regulated by the 3OC6-HSL-responsive transcriptional regulator LuxR directly. This demonstrates that V. fischeri quorum sensing regulates a substantial number of genes other than those involved in light production.
Chemical Reviews | 2011
Ann M. Stevens; Yves Queneau; Laurent Soulère; Susanne B. von Bodman; Alain Doutheau
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
Molecular Systems Biology | 2008
Joshua W Williams; Xiaohui Cui; Andre Levchenko; Ann M. Stevens
The quorum‐sensing (QS) response of Vibrio fischeri involves a rapid switch between low and high induction states of the lux operon over a narrow concentration range of the autoinducer (AI) 3‐oxo‐hexanoyl‐L‐homoserine lactone. In this system, LuxR is an AI‐dependent positive regulator of the lux operon, which encodes the AI synthase. This creates a positive feedback loop common in many bacterial species that exhibit QS‐controlled gene expression. Applying a combination of modeling and experimental analyses, we provide evidence for a LuxR autoregulatory feedback loop that allows LuxR to increase its concentration in the cell during the switch to full lux activation. Using synthetic lux gene fragments, with or without the AI synthase gene, we show that the buildup of LuxR provides more sensitivity to increasing AI, and promotes the induction process. Elevated LuxR levels buffer against spurious variations in AI levels ensuring a robust response that endows the system with enhanced hysteresis. LuxR autoregulation also allows for two distinct responses within the same cell population.
Infection and Immunity | 2005
Matthew D. Mastropaolo; Nicholas P. Evans; Meghan K. Byrnes; Ann M. Stevens; John L. Robertson; Stephen B. Melville
ABSTRACT Human diabetics frequently suffer delayed wound healing, increased susceptibility to localized and systemic infections, and limb amputations as a consequence of the disease. Lower-limb infections in diabetic patients are most often polymicrobial, involving mixtures of aerobic, facultative anaerobic, and anaerobic bacteria. The purpose of this study is to determine if these organisms contribute to synergy in polymicrobial infections by using diabetic mice as an in vivo model. The model was the obese diabetic mouse strain BKS.Cg-m +/+ Leprdb/J, a model of human type 2 diabetes. Young (5- to 6-week-old) prediabetic mice and aged (23- to 24-week-old) diabetic mice were compared. The mice were injected subcutaneously with mixed cultures containing Escherichia coli, Bacteroides fragilis, and Clostridium perfringens. Progression of the infection (usually abscess formation) was monitored by examining mice for bacterial populations and numbers of white blood cells at 1, 8, and 22 days postinfection. Synergy in the mixed infections was defined as a statistically significant increase in the number of bacteria at the site of injection when coinfected with a second bacterium, compared to when the bacterium was inoculated alone. E. coli provided strong synergy to B. fragilis but not to C. perfringens. C. perfringens and B. fragilis provided moderate synergy to each other but only in young mice. B. fragilis was anergistic (antagonistic) to E. coli in coinfections in young mice at 22 days postinfection. When age-matched nondiabetic mice (C57BLKS/J) were used as controls, the diabetic mice exhibited 5 to 35 times the number of CFU as did the nondiabetic mice, indicating that diabetes was a significant factor in the severity of the polymicrobial infections.
Journal of Bacteriology | 2012
Ann M. Stevens; Martin Schuster; Kendra P. Rumbaugh
The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication.
Fems Microbiology Letters | 2003
Deborah Johnson; Akira Ishihama; Ann M. Stevens
Quorum sensing-dependent activation of the luminescence (lux) genes of Vibrio fischeri relies on the formation of a complex between the autoinducer molecule, N-(3-oxohexanoyl)-L-homoserine lactone, and the autoinducer-dependent transcriptional activator LuxR. In its active conformation, LuxR binds to a site known as the lux box centered at position -42.5 relative to the luxI transcriptional start site and is thought to function as an ambidextrous activator capable of making multiple contacts with RNA polymerase (RNAP). The specific role of region 4 of the Escherichia coli sigma70 subunit of RNAP in LuxR-dependent activation of the luxI promoter has been investigated. Single-round transcription assays were performed in the presence of purified LuxRDeltaN, the autoinducer-independent C-terminal domain of LuxR, and a variant RNAP which contained a C-terminally truncated sigma70 subunit devoid of region 4. Results indicated that region 4 is essential for LuxRDeltaN-dependent luxI transcription, therefore 16 single and two triple alanine substitutions in region 4.2 of sigma70 between amino acid residues 590 and 613 were examined for their effects on LuxR- and LuxRDeltaN-dependent transcription at the luxI promoter. Taken together, the analyses performed on these variants of RpoD suggest that some individual residues in region 4.2 are important to the mechanism of activator-dependent transcription initiation under investigation.
Journal of Bacteriology | 2007
Nan Qin; Sean M. Callahan; Paul V. Dunlap; Ann M. Stevens
The regulation of the lux operon (luxICDABEG) of Vibrio fischeri has been intensively studied as a model for quorum sensing in proteobacteria. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis previously identified several non-Lux proteins in V. fischeri MJ-100 whose expression was dependent on LuxR and 3-oxo-hexanoyl-l-homoserine lactone (3-oxo-C6-HSL). To determine if the LuxR-dependent regulation of the genes encoding these proteins was due to direct transcriptional control by LuxR and 3-oxo-C6-HSL or instead was due to indirect control via an unidentified regulatory element, promoters of interest were cloned into a lacZ reporter and tested for their LuxR and 3-oxo-C6-HSL dependence in recombinant Escherichia coli. The promoters for qsrP, acfA, and ribB were found to be directly activated via LuxR-3-oxo-C6-HSL. The sites of transcription initiation were established via primer extension analysis. Based on this information and the position of the lux box-binding site near position -40, all three promoters appear to have a class II-type promoter structure. In order to more fully characterize the LuxR regulon in V. fischeri MJ-100, real-time reverse transcription-PCR was used to study the temporal expression of qsrP, acfA, and ribB during the exponential and stationary phases of growth, and electrophoretic mobility shift assays were used to compare the binding affinities of LuxR to the promoters under investigation. Taken together, the results demonstrate that regulation of the production of QsrP, RibB, and AcfA is controlled directly by LuxR at the level of transcription, thereby establishing that there is a LuxR regulon in V. fischeri MJ-100 whose genes are coordinately expressed during mid-exponential growth.
Genome Announcements | 2013
Roderick V. Jensen; Saylem M. DePasquale; Elizabeth A. Harbolick; Tian Hong; Alison L. Kernell; David H. Kruchko; Thero Modise; Cimarron E. Smith; Linda L. McCarter; Ann M. Stevens
ABSTRACT The number of inflammatory gastroenteritis outbreaks due to the food-borne pathogen Vibrio parahaemolyticus is rising sharply worldwide and in the United States in particular. Here we report the complete, annotated genome sequence of the prepandemic V. parahaemolyticus strain BB22OP and make some initial comparisons to the complete genome sequence for pandemic strain RIMD2210633.