Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Marshak-Rothstein is active.

Publication


Featured researches published by Ann Marshak-Rothstein.


Nature | 2002

Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors

Elizabeth A. Leadbetter; Ian R. Rifkin; Andreas Hohlbaum; Britte C. Beaudette; Mark J. Shlomchik; Ann Marshak-Rothstein

Autoreactive B cells are present in the lymphoid tissues of healthy individuals, but typically remain quiescent. When this homeostasis is perturbed, the formation of self-reactive antibodies can have serious pathological consequences. B cells expressing an antigen receptor specific for self-immunoglobulin-γ (IgG) make a class of autoantibodies known as rheumatoid factor (RF). Here we show that effective activation of RF+ B cells is mediated by IgG2a–chromatin immune complexes and requires the synergistic engagement of the antigen receptor and a member of the MyD88-dependent Toll-like receptor (TLR) family. Inhibitor studies implicate TLR9. These data establish a critical link between the innate and adaptive immune systems in the development of systemic autoimmune disease and explain the preponderance of autoantibodies reactive with nucleic acid–protein particles. The unique features of this dual-engagement pathway should facilitate the development of therapies that specifically target autoreactive B cells.


Nature Immunology | 2007

Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE

Jane Tian; Ana Maria Avalos; Su-Yau Mao; Bo Chen; Kannaki Senthil; Herren Wu; Peggy Parroche; Stacey Drabic; Douglas T. Golenbock; Cherilyn M. Sirois; Jing Hua; Ling Ling An; Laurent Audoly; Greg La Rosa; Angelika Bierhaus; Peter Naworth; Ann Marshak-Rothstein; Mary K. Crow; Katherine A. Fitzgerald; Eicke Latz; Peter A. Kiener; Anthony J. Coyle

Increased concentrations of DNA-containing immune complexes in the serum are associated with systemic autoimmune diseases such as lupus. Stimulation of Toll-like receptor 9 (TLR9) by DNA is important in the activation of plasmacytoid dendritic cells and B cells. Here we show that HMGB1, a nuclear DNA-binding protein released from necrotic cells, was an essential component of DNA-containing immune complexes that stimulated cytokine production through a TLR9–MyD88 pathway involving the multivalent receptor RAGE. Moreover, binding of HMGB1 to class A CpG oligodeoxynucleotides considerably augmented cytokine production by means of TLR9 and RAGE. Our data demonstrate a mechanism by which HMGB1 and RAGE activate plasmacytoid dendritic cells and B cells in response to DNA and contribute to autoimmune pathogenesis.


Nature Reviews Immunology | 2006

Toll-like receptors in systemic autoimmune disease

Ann Marshak-Rothstein

Toll-like receptors (TLRs) have a crucial role in the early detection of pathogen-associated molecular patterns and the subsequent activation of the adaptive immune response. Whether TLRs also have an important role in the recognition of endogenous ligands has been more controversial. Numerous in vitro studies have documented activation of both autoreactive B cells and plasmacytoid dendritic cells by mammalian TLR ligands. The issue of whether these in vitro observations translate to an in vivo role for TLRs in either the initiation or the progression of systemic autoimmune disease is a subject of intense research; data are beginning to emerge showing that this is the case.


Journal of Experimental Medicine | 2005

RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement

Christina M. Lau; Courtney Broughton; Abigail S. Tabor; Shizuo Akira; Richard A. Flavell; Mark J. Mamula; Sean R. Christensen; Mark J Shlomchik; Gregory A. Viglianti; Ian R. Rifkin; Ann Marshak-Rothstein

Previous studies (Leadbetter, E.A., I.R. Rifkin, A.H. Hohlbaum, B. Beaudette, M.J. Shlomchik, and A. Marshak-Rothstein. 2002. Nature. 416:603–607; Viglianti, G.A., C.M. Lau, T.M. Hanley, B.A. Miko, M.J. Shlomchik, and A. Marshak-Rothstein. 2003. Immunity. 19:837–847) established the unique capacity of DNA and DNA-associated autoantigens to activate autoreactive B cells via sequential engagement of the B cell antigen receptor (BCR) and Toll-like receptor (TLR) 9. We demonstrate that this two-receptor paradigm can be extended to the BCR/TLR7 activation of autoreactive B cells by RNA and RNA-associated autoantigens. These data implicate TLR recognition of endogenous ligands in the response to both DNA- and RNA-associated autoantigens. Importantly, the response to RNA-associated autoantigens was markedly enhanced by IFN-α, a cytokine strongly linked to disease progression in patients with systemic lupus erythematosus (SLE). As further evidence that TLRs play a key role in autoantibody responses in SLE, we found that autoimmune-prone mice, lacking the TLR adaptor protein MyD88, had markedly reduced chromatin, Sm, and rheumatoid factor autoantibody titers.


Journal of Experimental Medicine | 2004

Toll-like Receptor 9–Dependent and –Independent Dendritic Cell Activation by Chromatin–Immunoglobulin G Complexes

Melissa W. Boulé; Courtney Broughton; Fabienne Mackay; Shizuo Akira; Ann Marshak-Rothstein; Ian R. Rifkin

Dendritic cell (DC) activation by nucleic acid–containing immunoglobulin (Ig)G complexes has been implicated in systemic lupus erythematosus (SLE) pathogenesis. However, the mechanisms responsible for activation and subsequent disease induction are not completely understood. Here we show that murine DCs are much more effectively activated by immune complexes that contain IgG bound to chromatin than by immune complexes that contain foreign protein. Activation by these chromatin immune complexes occurs by two distinct pathways. One pathway involves dual engagement of the Fc receptor FcγRIII and Toll-like receptor (TLR)9, whereas the other is TLR9 independent. Furthermore, there is a characteristic cytokine profile elicited by the chromatin immune complexes that distinguishes this response from that of conventional TLR ligands, notably the induction of BAFF and the lack of induction of interleukin 12. The data establish a critical role for self-antigen in DC activation and explain how the innate immune system might drive the adaptive immune response in SLE.


Immunity | 2003

Activation of autoreactive B cells by CpG dsDNA.

Gregory A. Viglianti; Christina M. Lau; Timothy M. Hanley; Benjamin A Miko; Mark J. Shlomchik; Ann Marshak-Rothstein

The proliferative response of autoreactive rheumatoid factor (RF) B cells to mammalian chromatin-containing immune complexes (ICs) results from the sequential engagement of the B cell receptor (BCR) and Toll-like receptor 9 (TLR9). We have used ICs constructed from anti-hapten antibodies and defined haptenated dsDNA fragments to determine the form of mammalian DNA that mediates this process. Despite their relatively low abundance in mammalian DNA, we found that inclusion of hypomethylated CpG motifs in these ICs was necessary for effective activation. In the absence of antibody, the same fragments could efficiently stimulate low-affinity hapten-specific and DNA-reactive 3H9 B cells, but not RF B cells. These results extend the BCR/TLR9 coengagement paradigm to a second major class of autoreactive B cells, further confirm the critical role of the BCR in chromatin ligand delivery to TLR9, and implicate hypomethylated CpG motifs as ligand elements necessary for the initiation of systemic autoimmune disease.


Immunological Reviews | 2005

Toll-like receptors, endogenous ligands, and systemic autoimmune disease.

Ian R. Rifkin; Elizabeth A. Leadbetter; Liliana Busconi; Gregory A. Viglianti; Ann Marshak-Rothstein

Summary:  The critical role of Toll‐like receptors (TLRs) as mediators of pathogen recognition by the innate immune system is now firmly established. Such recognition results in the initiation of an inflammatory immune response and subsequent instruction of the adaptive immune system, both of which are designed to rid the host of the invading pathogen. More controversial is the potential role of TLRs in the recognition of endogenous ligands and what effect this might have on the consequent development of autoimmune or other chronic sterile inflammatory disorders. An increasing number of studies implicate TLRs as being involved in the immune response to self‐molecules that have in some way been altered from their native state or accumulate in non‐physiologic sites or amounts, although questions have been raised about possible contaminants in certain of these studies. In this review, we discuss the evidence for endogenous ligand–TLR interactions with particular emphasis on mammalian chromatin, systemic lupus erythematosus, and atherosclerosis. Overall, the data support the general concept of a role for TLRs in the recognition of endogenous ligands. However, the precise details of the interactions and the extent to which they may contribute to the pathogenesis of human disease remain to be clarified.


Nature Immunology | 2014

The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation.

Bernardo S. Franklin; Lukas Bossaller; Dominic De Nardo; Jacqueline M Ratter; Andrea Stutz; Gudrun Engels; Christoph Brenker; Mark Nordhoff; Sandra R Mirandola; Ashraf Al-Amoudi; Matthew Mangan; Sebastian Zimmer; Brian G. Monks; Martin Fricke; Reinhold Ernst Schmidt; Terje Espevik; Bernadette Jones; Andrew G. Jarnicki; Philip M. Hansbro; Patricia Busto; Ann Marshak-Rothstein; Simone Hornemann; Adriano Aguzzi; Wolfgang Kastenmüller; Eicke Latz

Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adaptor ASC and the assembly of ASC specks. ASC specks recruit and activate caspase-1, which induces maturation of the cytokine interleukin 1β (IL-1β) and pyroptotic cell death. Here we found that after pyroptosis, ASC specks accumulated in the extracellular space, where they promoted further maturation of IL-1β. In addition, phagocytosis of ASC specks by macrophages induced lysosomal damage and nucleation of soluble ASC, as well as activation of IL-1β in recipient cells. ASC specks appeared in bodily fluids from inflamed tissues, and autoantibodies to ASC specks developed in patients and mice with autoimmune pathologies. Together these findings reveal extracellular functions of ASC specks and a previously unknown form of cell-to-cell communication.


Nature | 2011

Response to self antigen imprints regulatory memory in tissues

Michael D. Rosenblum; Iris K. Gratz; Jonathan S. Paw; Karen Lee; Ann Marshak-Rothstein; Abul K. Abbas

Immune homeostasis in tissues is achieved through a delicate balance between pathogenic T-cell responses directed at tissue-specific antigens and the ability of the tissue to inhibit these responses. The mechanisms by which tissues and the immune system communicate to establish and maintain immune homeostasis are currently unknown. Clinical evidence suggests that chronic or repeated exposure to self antigen within tissues leads to an attenuation of pathological autoimmune responses, possibly as a means to mitigate inflammatory damage and preserve function. Many human organ-specific autoimmune diseases are characterized by the initial presentation of the disease being the most severe, with subsequent flares being of lesser severity and duration. In fact, these diseases often spontaneously resolve, despite persistent tissue autoantigen expression. In the practice of antigen-specific immunotherapy, allergens or self antigens are repeatedly injected in the skin, with a diminution of the inflammatory response occurring after each successive exposure. Although these findings indicate that tissues acquire the ability to attenuate autoimmune reactions upon repeated responses to antigens, the mechanism by which this occurs is unknown. Here we show that upon expression of self antigen in a peripheral tissue, thymus-derived regulatory T cells (Treg cells) become activated, proliferate and differentiate into more potent suppressors, which mediate resolution of organ-specific autoimmunity in mice. After resolution of the inflammatory response, activated Treg cells are maintained in the target tissue and are primed to attenuate subsequent autoimmune reactions when antigen is re-expressed. Thus, Treg cells function to confer ‘regulatory memory’ to the target tissue. These findings provide a framework for understanding how Treg cells respond when exposed to self antigen in peripheral tissues and offer mechanistic insight into how tissues regulate autoimmunity.


Journal of Immunology | 2007

Murine Dendritic Cell Type I IFN Production Induced by Human IgG-RNA Immune Complexes Is IFN Regulatory Factor (IRF)5 and IRF7 Dependent and Is Required for IL-6 Production

Kei Yasuda; Christophe Richez; Joseph Walter Maciaszek; Neerja Agrawal; Shizuo Akira; Ann Marshak-Rothstein; Ian R. Rifkin

Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcγRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-α, IFN-β, and IL-6 and up-regulate costimulatory molecules in a FcγR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-α and IFN-β production. Unexpectedly, however, IRF5 plays a critical role in IFN-α and IFN-β production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.

Collaboration


Dive into the Ann Marshak-Rothstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyr-Te Ju

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Fitzgerald

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Busto

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Nundel

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge