Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Shlomchik is active.

Publication


Featured researches published by Mark J. Shlomchik.


Journal of Experimental Medicine | 2013

MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies

Nicolas Molnarfi; Ulf Schulze-Topphoff; Martin S. Weber; Juan C. Patarroyo; Thomas Prod'homme; Michel Varrin-Doyer; Aparna Shetty; Christopher Linington; Anthony J. Slavin; Juan Hidalgo; Dieter E. Jenne; Hartmut Wekerle; Raymond A. Sobel; Claude C.A. Bernard; Mark J. Shlomchik; Scott S. Zamvil

Antigen presentation, but not antibody secretion, by B cells drives CNS autoimmunity induced by immunization with human MOG.


Nature Immunology | 2014

CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype

Griselda Zuccarino-Catania; Saheli Sadanand; Florian Weisel; Mary M. Tomayko; Hailong Meng; Steven H. Kleinstein; Kim L. Good-Jacobson; Mark J. Shlomchik

Memory B cells (MBCs) are long-lived sources of rapid, isotype-switched secondary antibody-forming cell (AFC) responses. Whether MBCs homogeneously retain the ability to self-renew and terminally differentiate or if these functions are compartmentalized into MBC subsets has remained unclear. It has been suggested that antibody isotype controls MBC differentiation upon restimulation. Here we demonstrate that subcategorizing MBCs on the basis of their expression of CD80 and PD-L2, independently of isotype, identified MBC subsets with distinct functions upon rechallenge. CD80+PD-L2+ MBCs differentiated rapidly into AFCs but did not generate germinal centers (GCs); conversely, CD80−PD-L2− MBCs generated few early AFCs but robustly seeded GCs. The gene-expression patterns of the subsets supported both the identity and function of these distinct MBC types. Hence, the differentiation and regeneration of MBCs are compartmentalized.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Suppression of systemic autoimmunity by the innate immune adaptor STING

Shrutie Sharma; Allison M. Campbell; Jennie Chan; Stefan A. Schattgen; Gregory M. Orlowski; Ribhu Nayar; Annie Huyler; Kerstin Nundel; Chandra Mohan; Leslie J. Berg; Mark J. Shlomchik; Ann Marshak-Rothstein; Katherine A. Fitzgerald

Significance Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that presents with a diverse array of clinical symptoms and afflicts over 1.5 million Americans. Current treatments involve immunosuppressive regimens associated with debilitating and adverse effects. With the description of a role for innate signaling in SLE, safe and efficient therapies that block Toll-like receptors also have been stymied by the relative short in vivo half lives of known inhibitors and the dangerous outcome of complete MyD88 blockade. Key natural regulators of the disease process are not well described but are more likely to provide disease-specific therapeutics with fewer adverse effects. In this study, we have identified a novel function for Stimulator of interferon genes as a suppressor of disease and a target for future SLE therapeutics. Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies.


Cell Reports | 2013

Context-Specific BAFF-R Signaling by the NF-κB and PI3K Pathways

Julia Jellusova; Ana V. Miletic; Matthew H. Cato; Waiwai Lin; Yinling Hu; Gail A. Bishop; Mark J. Shlomchik; Robert C. Rickert

BAFF is a soluble factor required for B cell maturation and survival. BAFF-R signals via the noncanonical NF-κB pathway regulated by the TRAF3/NIK/IKK1 axis. We show that deletion of Ikk1 during early B cell development causes a partial impairment in B cell maturation and BAFF-dependent survival, but inactivation of Ikk1 in mature B cells does not affect survival. We further show that BAFF-R employs CD19 to promote survival via phosphatidylinositol 3-kinase (PI3K), and that coinactivation of Cd19 and Ikk1 causes a profound block in B cell maturation at the transitional stage. Consistent with a role for PI3K in BAFF-R function, inactivation of PTEN mediates a partial rescue of B cell maturation and function in Baff(-/-) animals. Elevated PI3K signaling also circumvents BAFF-dependent survival in a spontaneous B cell lymphoma model. These findings indicate that the combined activities of PI3K and IKK1 drive peripheral B cell differentiation and survival in a context-dependent manner.


Journal of Experimental Medicine | 2016

Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells

Andrew Getahun; Nicole A. Beavers; Sandy R. Larson; Mark J. Shlomchik; John C. Cambier

Cambier et al. show that the tyrosine phosphatase SHP-1 and the inositol phosphatase SHIP-1 are required to maintain B cell anergy.


Immunity | 2015

Antibody Effector Functions Mediated by Fcγ-Receptors Are Compromised during Persistent Viral Infection

Andreas Wieland; Rangaiah Shashidharamurthy; Alice O. Kamphorst; Jin-Hwan Han; Rachael D. Aubert; Biswa Choudhury; Sean R. Stowell; Junghwa Lee; George A. Punkosdy; Mark J. Shlomchik; Periasamy Selvaraj; Rafi Ahmed

T cell dysfunction is well documented during chronic viral infections but little is known about functional abnormalities in humoral immunity. Here we report that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) exhibit a severe defect in Fcγ-receptor (FcγR)-mediated antibody effector functions. Using transgenic mice expressing human CD20, we found that chronic LCMV infection impaired the depletion of B cells with rituximab, an anti-CD20 antibody widely used for the treatment of B cell lymphomas. In addition, FcγR-dependent activation of dendritic cells by agonistic anti-CD40 antibody was compromised in chronically infected mice. These defects were due to viral antigen-antibody complexes and not the chronic infection per se, because FcγR-mediated effector functions were normal in persistently infected mice that lacked LCMV-specific antibodies. Our findings have implications for the therapeutic use of antibodies and suggest that high levels of pre-existing immune complexes could limit the effectiveness of antibody therapy in humans.


Immunity | 2015

Sequential Activation of Two Pathogen-Sensing Pathways Required for Type I Interferon Expression and Resistance to an Acute DNA Virus Infection

Ren-Huan Xu; Eric Wong; Daniel Rubio; Felicia Roscoe; Xueying Ma; Savita Nair; Sanda Remakus; Reto A. Schwendener; Shinu John; Mark J. Shlomchik; Luis J. Sigal

Toll-like receptor 9 (TLR9), its adaptor MyD88, the downstream transcription factor interferon regulatory factor 7 (IRF7), and type I interferons (IFN-I) are all required for resistance to infection with ectromelia virus (ECTV). However, it is not known how or in which cells these effectors function to promote survival. Here, we showed that after infection with ECTV, thexa0TLR9-MyD88-IRF7 pathway was necessary in CD11c(+) cells for the expression of proinflammatory cytokines and the recruitment of inflammatory monocytes (iMos) to the draining lymph node (dLN). In the dLN, the major producers of IFN-I were infected iMos, which used the DNA sensor-adaptor STING to activate IRF7 and nuclear factor κB (NF-κB) signaling to induce the expression of IFN-α and IFN-β, respectively. Thus, inxa0vivo, two pathways of DNA pathogen sensing act sequentially in two distinct cell types to orchestrate resistance to a viral disease.


Journal of Immunology | 2014

Targeting Antigens through Blood Dendritic Cell Antigen 2 on Plasmacytoid Dendritic Cells Promotes Immunologic Tolerance

Craig P. Chappell; Natalia V. Giltiay; Kevin E. Draves; Chang Hung Chen; Martha Hayden-Ledbetter; Mark J. Shlomchik; Daniel H. Kaplan; Edward A. Clark

The C-type lectin receptor blood dendritic cell Ag 2 (BDCA2) is expressed exclusively on human plasmacytoid DCs (pDCs) and plays a role in Ag capture, internalization, and presentation to T cells. We used transgenic mice that express human BDCA2 and anti-BDCA2 mAbs to deliver Ags directly to BDCA2 on pDCs in vivo. Targeting Ag to pDCs in this manner resulted in significant suppression of Ag-specific CD4+ T cell and Ab responses upon secondary exposure to Ag in the presence of adjuvant. Suppression of Ab responses required both a decrease in effector CD4+ T cells and preservation of Foxp3+ regulatory T cells (Tregs). Reduction in Treg numbers following Ag delivery to BDCA2 restored both CD4+ T cell activation and Ab responses, demonstrating that Tregs were required for the observed tolerance. Our results demonstrate that Ag delivery to pDCs through BDCA2 is an effective method to induce immunological tolerance, which may be useful for treating autoimmune diseases or to inhibit unwanted Ab responses.


Journal of Immunology | 2016

A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data

Ang Cui; Roberto Di Niro; Jason A. Vander Heiden; Adrian W. Briggs; Kris Adams; Tamara J. Gilbert; Kevin C. O’Connor; Francois Vigneault; Mark J. Shlomchik; Steven H. Kleinstein

Analyses of somatic hypermutation (SHM) patterns in B cell Ig sequences have important basic science and clinical applications, but they are often confounded by the intrinsic biases of SHM targeting on specific DNA motifs (i.e., hot and cold spots). Modeling these biases has been hindered by the difficulty in identifying mutated Ig sequences in vivo in the absence of selection pressures, which skew the observed mutation patterns. To generate a large number of unselected mutations, we immunized B1-8 H chain transgenic mice with nitrophenyl to stimulate nitrophenyl-specific λ+ germinal center B cells and sequenced the unexpressed κ L chains using next-generation methods. Most of these κ sequences had out-of-frame junctions and were presumably uninfluenced by selection. Despite being nonfunctionally rearranged, they were targeted by SHM and displayed a higher mutation frequency than functional sequences. We used 39,173 mutations to construct a quantitative SHM targeting model. The model showed targeting biases that were consistent with classic hot and cold spots, yet revealed additional highly mutable motifs. We observed comparable targeting for functional and nonfunctional sequences, suggesting similar biological processes operate at both loci. However, we observed species- and chain-specific targeting patterns, demonstrating the need for multiple SHM targeting models. Interestingly, the targeting of C/G bases and the frequency of transition mutations at C/G bases was higher in mice compared with humans, suggesting lower levels of DNA repair activity in mice. Our models of SHM targeting provide insights into the SHM process and support future analyses of mutation patterns.


Journal of Immunology | 2016

ZBTB32 Restricts the Duration of Memory B Cell Recall Responses

Arijita Jash; Yinan Wang; Florian Weisel; Christopher D. Scharer; Jeremy M. Boss; Mark J. Shlomchik; Deepta Bhattacharya

Memory B cell responses are more rapid and of greater magnitude than are primary Ab responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of Ab recall responses. ZBTB32 is highly expressed by mouse and human memory B cells but not by their naive counterparts. Zbtb32−/− mice mount normal primary Ab responses to T-dependent Ags. However, Zbtb32−/− memory B cell–mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32−/− secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32−/− secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of Ab recall responses.

Collaboration


Dive into the Mark J. Shlomchik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Marshak-Rothstein

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge