Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Amat is active.

Publication


Featured researches published by Anna Amat.


Nano Letters | 2014

Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting

Anna Amat; Edoardo Mosconi; Enrico Ronca; Claudio Quarti; Paolo Umari; Md. K. Nazeeruddin; Michael Grätzel; Filippo De Angelis

Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.


Journal of Physical Chemistry A | 2009

Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation.

Anna Amat; Catia Clementi; Filippo De Angelis; Antonio Sgamellotti; Simona Fantacci

The absorption and emission properties of the two components of the yellow color extracted from weld (Reseda luteola L.), apigenin and luteolin, have been extensively investigated by means of DFT and TDDFT calculations. Our calculations reproduce the absorption spectra of both flavonoids in good agreement with the experimental data and allow us to assign the transitions giving rise to the main spectral features. For apigenin, we have also computed the electronic spectrum of the monodeprotonated species, providing a rationale for the red-shift of the experimental spectrum with increasing pH. The fluorescence emission of both apigenin and luteolin has then been investigated. Excited-state TDDFT geometry optimizations have highlighted an excited-state intramolecular proton transfer (ESIPT) from the 5-hydroxyl to the 4-carbonyl oxygen of the substituted benzopyrone moiety. By computing the potential energy curves at the ground and excited states as a function of an approximate proton transfer coordinate for apigenin, we have been able to trace an ESIPT pathway and thus explain the double emission observed experimentally.


Chemistry: A European Journal | 2013

Tetraaryl ZnIIPorphyrinates Substituted at β-Pyrrolic Positions as Sensitizers in Dye-Sensitized Solar Cells: A Comparison withmeso-Disubstituted Push-Pull ZnIIPorphyrinates

Gabriele Di Carlo; Alessio Orbelli Biroli; Maddalena Pizzotti; Francesca Tessore; Vanira Trifiletti; Riccardo Ruffo; Alessandro Abbotto; Anna Amat; Filippo De Angelis; Patrizia R. Mussini

A facile and fast approach, based on microwave-enhanced Sonogashira coupling, has been employed to obtain in good yields both mono- and, for the first time, disubstituted push-pull Zn(II) porphyrinates bearing a variety of ethynylphenyl moieties at the β-pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β-mono- or disubstituted Zn(II) porphyrinates and meso-disubstituted push-pull Zn(II) porphyrinates. We have obtained evidence that, although the HOMO-LUMO energy gap of the meso-substituted push-pull dyes is lower, so that charge transfer along the push-pull system therein is easier, the β-mono- or disubstituted push-pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β-monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon-to-current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350-650 nm). In contrast, meso-substitution produces IPCE spectra with two less intense and well-separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge-transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β-monosubstituted Zn(II) porphyrinates extremely promising sensitizers for use in DSSCs.


Accounts of Chemical Research | 2010

Computational Chemistry Meets Cultural Heritage: Challenges and Perspectives

Simona Fantacci; Anna Amat; Antonio Sgamellotti

Chemistry is central to addressing topics of interest in the cultural heritage field, offering particular insight into the nature and composition of the original materials, the degradation processes that have occurred over the years, and the attendant physical and chemical changes. On the one hand, the chemical characterization of the constituting materials allows researchers to unravel the rich information enclosed in a work of art, providing insight into the manufacturing techniques and revealing aspects of artistic, chronological, historical, and sociocultural significance. On the other hand, despite the recognized contribution of computational chemistry in many branches of materials science, this tool has only recently been applied to cultural heritage, largely because of the inherent complexity of art materials. In this Account, we present a brief overview of the available computational methods, classified on the basis of accuracy level and dimension of the system to be simulated. Among the discussed methodologies, density functional theory (DFT) and time-dependent DFT represent a good compromise between accuracy and computational cost, allowing researchers to model the structural, electronic, and spectroscopic properties of complex extended systems in condensed phase. We then discuss the results of recent research devoted to the computer simulation of prototypical systems in cultural heritage, namely, indigo and Maya Blue, weld and weld lake, and the pigment minium (red lead). These studies provide insight into the basic interactions underlying the materials properties and, in some cases, permit the assignment of the material composition. We discuss properties of interest in the cultural heritage field, ranging from structural geometries and acid-base properties to IR-Raman vibrational spectra and UV-vis absorption-emission spectra (including excited-state deactivation pathways). We particularly highlight how computational chemistry applications in cultural heritage can complement experimental investigations by establishing or rationalizing structure-property relations of the fundamental artwork components. These insights allow researchers to understand the interdependence of such components and eventually the composition of the artwork materials. As a perspective, we aim to extend the simulations to systems of increasing complexity that are similar to the realistic materials encountered in works of art. A challenge is the computational investigation of materials degradation and their associated reactive pathways; here the possible initial components, intermediates, final materials, and various deterioration mechanisms must all be simulated.


Journal of Physical Chemistry B | 2013

A Model Potential for Acetonitrile: from Small Clusters to Liquid

M. Albertí; Anna Amat; F. De Angelis; Fernando Pirani

A portable model potential, representing the intermolecular interaction of acetonitrile with itself and with ions, is proposed. Such model, formulated as a combination of a few effective components, given in terms of the polarizability and dipole moment values of the molecular partners, is here adopted as a building block of the force field of acetonitrile clusters in molecular dynamics simulations. Its reliability is tested by comparing the predicted features for both small ionic and neutral clusters containing acetonitrile with ab initio results and experimental information. Its application to molecular dynamics simulations of liquid acetonitrile and of the solvated Li(+), Na(+), K(+), and I(-), performed at several values of the temperature, discloses an ample and interesting phenomenology, described in an internally consistent way. Such model will be useful to assess the effect of intermolecular interactions on the dynamics of acetonitrile processes occurring in various environments of applied relevance, with emphasis on the dye-sensitized solar cell framework.


Physical Chemistry Chemical Physics | 2012

Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface

Anna Amat; Filippo De Angelis

We report a first principles density functional theory/time-dependent density functional theory (DFT/TDDFT) computational investigation on a prototypical perylene dye anchored to realistic ZnO nanostructures, approaching the size of the ZnO nanowires used in dye-sensitized solar cells devices. DFT calculations were performed on (ZnO)(n) clusters of increasing size, with n up to 222, of 1.3 × 1.5 × 3.4 nm dimensions, and for the related dye-sensitized models. We show that quantum confinement in the ZnO nanostructures substantially affects the dye/semiconductor alignment of energy levels, with smaller ZnO models providing unfavourable electron injection. An increasing broadening of the dye LUMO is found moving to larger substrates, substantially contributing to the interfacial electronic coupling. TDDFT excited state calculations for the investigated dye@(ZnO)(222) system are fully consistent with experimental data, quantitatively reproducing the red-shift and broadening of the visible absorption spectrum observed for the ZnO-anchored dye compared to the dye in solution. TDDFT calculations on the fully interacting system also introduce a contribution to the dye/semiconductor admixture, due to configurational excited state mixing. Our results highlight the importance of quantum confinement in dye-sensitized ZnO interfaces, and provide the fundamental insight lying at the heart of the associated DSC devices.


Physical Chemistry Chemical Physics | 2016

Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT

Susanna K. Eriksson; Ida Josefsson; Hanna Ellis; Anna Amat; Mariachiara Pastore; Johan Oscarsson; Rebecka Lindblad; Anna Eriksson; Erik M. J. Johansson; Gerrit Boschloo; Anders Hagfeldt; Simona Fantacci; Michael Odelius; Håkan Rensmo

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.


RSC Advances | 2016

Structural and electronic properties of the PbCrO4 chrome yellow pigment and of its light sensitive sulfate-substituted compounds

Anna Amat; Costanza Miliani; Simona Fantacci

Chrome Yellows (CY) are a family of synthetic pigments of the formula PbCr(1−x)SxO4, used by van Gogh and other nineteenth-century masters, whose photo-degradation threatens the conservation of invaluable works of art. Experimental studies have demonstrated that the darkening of the pigment is provoked by the formation of superficial layers of Cr(III) oxides and sulfates due to the reduction of the native Cr(VI) to the Cr(III) oxidation state. A strong correlation between CY degradation and its chemical composition (sulfate richness) and structure (orthorhombic vs. monoclinic) was also experimentally put forward. Here we investigate a possible sulfate pathway to CY degradation, and investigate PbCr(1−x)SxO4 (x = 0, 0.25, 0.5, 0.75, 1) compounds in both orthorhombic and monoclinic phases by first principles DFT calculations. Our results show that the mixed PbCr(1−x)SxO4 and the native PbCrO4 share a similar electronic structure, though an energy up-shift of the conduction band is computed by both increasing the amount of sulfate and passing from the monoclinic to the orthorhombic phase. Our calculations suggests that, under a purely electronic picture, the Cr(VI) photo-reduction is more difficult for compounds with high sulfur concentration and an orthorhombic phase. Therefore, we conclude that degradation should be ascribed to other factors, such as different solubility and morphology.


Theoretical Chemistry Accounts | 2012

DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UV–vis spectroscopy

Anna Amat; Simona Fantacci; Filippo De Angelis; Benedetta Carlotti; Fausto Elisei

Tetracyclines are a class of derivatives of polycyclic naphthacene carboxamide, which have attracted wide interest in the pharmaceutical field for their use as antibiotics. These molecules are characterized by a substantial conformational flexibility and by the presence of different binding sites which endow tetracycline with a noticeable capability in binding biological targets. A salient property of tetracyclines is the presence of multiple acidic groups: four equilibrium constants have been measured for the fully protonated tetracycline (TCH3+) but so far no clear information concerning the pKas of the various sites has been reported. We present here a computational investigation on the correlation between the acid–base and the spectroscopic properties of this important class of compounds. Starting from the TCH3+ species, the pKa of all the possible deprotonation sites has been computed by DFT calculations. The computed pKas nicely compare with the experimental data, within 1 pKa unit, allowing us to individuate the products of the first deprotonation. This procedure has been iteratively repeated using as starting species the products singled out from the previous deprotonation, thus individuating the stepwise products of each deprotonation step. Then, the optical absorption spectra have been computed for all the species involved in the protonation/deprotonation equilibria, comparing the results with the experimental data. The good agreement between theory and experiment has allowed us to rationalize the correlation between the solution pH and the absorption spectra.


Chemsuschem | 2017

Designing Squaraines to Control Charge Injection and Recombination Processes in NiO-based Dye-Sensitized Solar Cells

Oliver Langmar; Davide Saccone; Anna Amat; Simona Fantacci; Guido Viscardi; Claudia Barolo; Rubén D. Costa; Dirk M. Guldi

Herein, the synthesis of a new family of squaraines (SQs) and their application in p-type dye-sensitized solar cells (DSSCs) is presented. In particular, two sets of SQs were designed featuring either two or four anchoring carboxylic groups combined with either oxygen or dicyanovinyl central groups. The SQs were characterized by using a joint theoretical, photophysical, and electrochemical approach. Importantly, the presence of different central groups forces a frozen cis (dicyanovinyl group) or a trans (oxygen group) SQ conformation. Based on the latter, the current work enables a direct comparison between cis and trans isomers as well as the impact of a different number of anchors. Considering their electron-accepting and light-harvesting character, they were tested in NiO-based DSSCs. Photocurrent-voltage, incident photon-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy measurements were performed. By virtue of their different symmetry, stereochemistry, and number of carboxylic groups, altered adsorption behavior onto NiO electrodes as well as diverse charge injection and charge recombination dynamics were noted under operation conditions. SQs with four linkers in a frozen cis isomerism show the best charge collection properties among the investigated SQs, providing a valuable guideline for the molecular design of future SQs for p-type DSSCs. In addition, we assembled tandem DSSCs featuring SQ/NiO photocathodes and N719/TiO2 photoanodes. The IPCE of the resulting tandem DSSCs implies light harvesting throughout most of the visible part of the solar spectrum owing to the complementary absorption features of SQ and N719.

Collaboration


Dive into the Anna Amat's collaboration.

Top Co-Authors

Avatar

Filippo De Angelis

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Albertí

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Md. K. Nazeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Lingamallu Giribabu

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

A. Aguilar

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

A. Romani

University of Perugia

View shared research outputs
Researchain Logo
Decentralizing Knowledge