Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Atlante is active.

Publication


Featured researches published by Anna Atlante.


FEBS Letters | 2001

Glutamate neurotoxicity, oxidative stress and mitochondria

Anna Atlante; Pietro Calissano; Antonella Bobba; Sergio Giannattasio; Ersilia Marra; Salvatore Passarella

The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as ‘glutamate neurotoxicity’ (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present study describes the state of art in the field of GNT with a special emphasis on the oxidative stress and mitochondria. In particular, we report how ROS are generated and how they affect mitochondrial function in GNT. The relationship between ROS generation and cytochrome c release is described in detail, with the released cytochrome c playing a role in the cell defense mechanism against neurotoxicity.


Journal of Biological Chemistry | 2000

Cytochrome c Is Released from Mitochondria in a Reactive Oxygen Species (ROS)-dependent Fashion and Can Operate as a ROS Scavenger and as a Respiratory Substrate in Cerebellar Neurons Undergoing Excitotoxic Death

Anna Atlante; Pietro Calissano; Antonella Bobba; Amalia Azzariti; Ersilia Marra; Salvatore Passarella

In rat cerebellar granule cells both reactive oxygen species production and release of cytochrome c take place during glutamate toxicity. This investigation was aimed (i) to ascertain whether and how these two processes are related and (ii) to gain insight into the role played by the released cytochrome c in the onset of neurotoxicity. Cytochrome c release takes place owing to the generation of reactive oxygen species both in glutamate-treated cerebellar granule cells and in sister control cultures incubated in the presence of the reactive oxygen species-generating system consisting of xanthine plus xanthine oxidase. In the early phase of neurotoxicity (30-min glutamate exposure) about 40% of the maximum (as measured at 3 h of glutamate exposure) cytochrome c release was found to occur in cerebellar granule cells from mitochondria that were essentially coupled and intact and that had a negligible production of oxygen free radicals. Contrarily, mitochondria from cells treated with glutamate for 3 h were mostly uncoupled and produced reactive oxygen species at a high rate. The cytosolic fraction containing the released cytochrome c was able to transfer electrons from superoxide anion to molecular oxygen via the respiratory chain and was found to partially prevent glutamate toxicity when added externally to cerebellar neurons undergoing necrosis. In the light of these findings, we propose that in the early phase of neurotoxicity, cytochromec release can be part of a cellular and mitochondrial defense mechanism against oxidative stress.


Journal of Neurochemistry | 2002

Glutamate Neurotoxicity in Rat Cerebellar Granule Cells: A Major Role for Xanthine Oxidase in Oxygen Radical Formation

Anna Atlante; Sara Gagliardi; G. M. Minervini; M. T. Ciotti; Ersilia Marra; Pietro Calissano

Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2′,7′‐dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µM glutamate pulse administered to 7‐day‐old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK‐801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate‐triggered, NMDA‐mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.


Biochemical and Biophysical Research Communications | 1988

Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser.

Salvatore Passarella; Angela Ostuni; Anna Atlante; E. Quagliariello

To gain some insight into the mechanism of cell photostimulation by laser light, measurements were made of the rate of ADP/ATP exchange in mitochondria irradiated with the low power continuous wave Helium Neon laser (energy dose 5 Joules/cm2). To do this a method has been developed to continuously monitor ATP efflux from phosphorylating mitochondria caused by externally added ADP, by photometrically following the NADP+ reduction which occurs in the presence of glucose, hexokinase, glucose-6-phosphate dehydrogenase and effluxed ATP. The NADP+ reduction rate shows hyperbolic dependence on ADP concentration (Km and Vmax values 8.5 +/- 0.87 microM and 20.7 +/- 0.49 nmoles NADP+ reduced/min x mg mitochondrial protein, respectively), and proves to measure the activity of the ADP/ATP translocator as shown by inhibition experiments using atracyloside, powerful inhibitor of this carrier. Irradiation was found to enhance the rate of ADP/ATP antiport, with externally added ADP ranging between 5 and 100 microM. As a result of experiments carried out with mitochondria loaded with either ATP or ADP, the increase in the activity of the ADP/ATP translocator is here proposed to depend on the increase in the electrochemical proton gradient which occurs owing to irradiation of mitochondria.


FEBS Letters | 2008

Mitochondria and l-lactate metabolism

Salvatore Passarella; Lidia de Bari; Daniela Valenti; Roberto Pizzuto; Gianluca Paventi; Anna Atlante

We review here the novel insights arisen from investigations on l‐lactate metabolism in mammalian, plant and yeast mitochondria. The presence of l‐lactate dehydrogenases inside mitochondria, where l‐lactate enters in a carrier‐mediated fashion, suggests that mitochondria play an important role in l‐lactate metabolism. Functional studies have demonstrated the occurrence of several l‐lactate carriers. Moreover, immunological investigations have proven the existence of monocarboxylate translocator isoforms in mitochondria.


Mitochondrion | 2003

The role of mitochondrial transport in energy metabolism

Salvatore Passarella; Anna Atlante; Daniela Valenti; Lidia de Bari

Since mitochondria are closed spaces in the cell, metabolite traffic across the mitochondrial membrane is needed to accomplish energy metabolism. The mitochondrial carriers play this function by uniport, symport and antiport processes. We give here a survey of about 50 transport processes catalysed by more than 30 carriers with a survey of the methods used to investigate metabolite transport in isolated mammalian mitochondria. The role of mitochondria in metabolic pathways including ammoniogenesis, amino acid metabolism, mitochondrial shuttles etc. is also reported in more detail, mainly in the light of the existence of new transport processes.


FEBS Letters | 1999

Early release and subsequent caspase‐mediated degradation of cytochrome c in apoptotic cerebellar granule cells

Antonella Bobba; Anna Atlante; Sergio Giannattasio; G. Sgaramella; Pietro Calissano; Ersilia Marra

Cytochrome c (cyt c) release was investigated in cerebellar granule cells used as an in vitro neuronal model of apoptosis. We have found that cyt c is released into the cytoplasm as an intact, functionally active protein, that this event occurs early, in the commitment phase of the apoptotic process, and that after accumulation, this protein is progressively degraded. Degradation, but not release, is fully blocked by benzyloxycarbonyl‐Val‐Ala‐Asp‐fluoromethylchetone (z‐VAD‐fmk). On the basis of previous findings obtained in the same neuronal population undergoing excitotoxic death, it is hypothesized that release of cyt c may be part of a cellular attempt to maintain production of ATP via cytochrome oxidase, which is reduced by cytosolic NADH in a cytochrome b 5‐soluble cyt c‐mediated fashion.


Journal of Neurochemistry | 2003

The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death

Anna Atlante; Antonella Bobba; Pietro Calissano; Salvatore Passarella; Ersilia Marra

We investigate the death route induced by potassium depletion in cerebellar granule cells in 0–15 h time range and study whether and how mutual relationship occurs between the cell antioxidant and proteolytic system. To achieve this, we incubated cells in the absence or presence of inhibitors of the antioxidant system, including superoxide dismutase and catalase, and of the proteolytic system, consisting of proteasomes and caspases, and investigated whether and how (i) cell survival, (ii) reactive oxygen species (ROS) production and (iii) antioxidant enzyme and caspase‐3 activity change as a function of time after the apoptotic stimulus. The involvement of both antioxidant and proteolytic system on cytochrome c release was also investigated. Cell survival was found to increase in the presence of either proteasome or caspase inhibitors. On the contrary, as a result of the antioxidant system impairment, shift from apoptosis to necrosis occurs. We show that the antioxidant system, which exhibits a huge activity increase up to 3 h after apoptosis induction, is subjected to the proteasome‐dependent proteolysis and that the increase in the antioxidant system found in the absence of proteasome activity is accompanied by ROS production decrease. Consistently, the early ROS‐dependent release of cytochrome c was found to be prevented when the activity of the antioxidant system increased. Finally, caspase‐3 activation was prevented by the inhibitors of both antioxidant system and proteasome.


Mitochondrion | 2013

Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively

A. Bobba; G. Amadoro; D. Valenti; V. Corsetti; R. Lassandro; Anna Atlante

Here we investigate the effect of β-amyloid on mitochondrial respiratory function, i.e. mitochondrial oxygen consumption and membrane potential generation as well as the individual activities of both the mitochondrial Complexes I-IV, that compose mitochondrial electron transport chain, and the ATP synthase, by using homogenate from cerebellar granule cells, treated with low concentrations of β-amyloid, and Alzheimer synaptic-enriched brain samples. We found that β-amyloid caused both a selective defect in Complex I activity associated with an increase (5 fold) of intracellular reactive oxygen species and an impairment of Complex IV likely due to membrane lipid peroxidation. In addition, a 130% increase of the GSSG/GSH ratio was measured in Alzheimer brains with respect to age-matched controls. Knowing the mechanisms of action of β-amyloid could allow to mitigate or even to interrupt the toxic cascade that leads a cell to death. The results of this study represent an important innovation because they offer the possibility to act at mitochondrial level and on specific sites to protect cells, for example by preventing the interaction of β-amyloid with the identified targets, by stabilizing or by restoring mitochondrial function or by interfering with the energy metabolism.


Journal of Neurochemistry | 2002

Glutamate Neurotoxicity in Rat Cerebellar Granule Cells Involves Cytochrome c Release from Mitochondria and Mitochondrial Shuttle Impairment

Anna Atlante; Sabatina Gagliardi; Ersilia Marra; Pietro Calissano; Salvatore Passarella

Abstract: To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate‐treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH‐b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3‐phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate‐treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time‐dependent, an index of the progressive damage of the cell.

Collaboration


Dive into the Anna Atlante's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge