Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna-Bella Failloux is active.

Publication


Featured researches published by Anna-Bella Failloux.


PLOS ONE | 2007

Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus.

Marie Vazeille; Sara Moutailler; Daniel Coudrier; Claudine Rousseaux; Huot Khun; Michel Huerre; J. Thiria; Jean-Sébastien Dehecq; Didier Fontenille; Isabelle Schuffenecker; Philippe Desprès; Anna-Bella Failloux

Background A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005–2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations. Methodology and Findings We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 107 plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21. Conclusions Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21.


Emerging Infectious Diseases | 2011

Chikungunya virus, southeastern France.

Marc Grandadam; Valérie Caro; Sébastien Plumet; Jean-Michel Thiberge; Yvan Souares; Anna-Bella Failloux; Hugues J. Tolou; Michel Budelot; Didier Cosserat; Isabelle Leparc-Goffart; Philippe Desprès

In September 2010, autochthonous transmission of chikungunya virus was recorded in southeastern France, where the Aedes albopictus mosquito vector is present. Sequence analysis of the viral genomes of imported and autochthonous isolates indicated new features for the potential emergence and spread of the virus in Europe.


PLOS Neglected Tropical Diseases | 2016

Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

Thais Chouin-Carneiro; Anubis Vega-Rúa; Marie Vazeille; André Yébakima; Romain Girod; Daniella Goindin; Myrielle Dupont-Rouzeyrol; Ricardo Lourenço-de-Oliveira; Anna-Bella Failloux

Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.


PLOS ONE | 2009

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection

Mathieu Dubrulle; Laurence Mousson; Sara Moutailler; Marie Vazeille; Anna-Bella Failloux

Background Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV? Methodology and Findings We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU). Conclusions Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus

Marcus S. C. Blagrove; Camilo Arias-Goeta; Anna-Bella Failloux; Steven P. Sinkins

Wolbachia inherited bacteria are able to invade insect populations using cytoplasmic incompatibility and provide new strategies for controlling mosquito-borne tropical diseases, such as dengue. The overreplicating wMelPop strain was recently shown to strongly inhibit the replication of dengue virus when introduced into Aedes aegypti mosquitoes, as well as to stimulate chronic immune up-regulation. Here we show that stable introduction of the wMel strain of Drosophila melanogaster into Aedes albopictus, a vector of dengue and other arboviruses, abolished the transmission capacity of dengue virus-challenged mosquitoes. Immune up-regulation was observed in the transinfected line, but at a much lower level than that previously found for transinfected Ae. aegypti. Transient infection experiments suggest that this difference is related to Ae. albopictus immunotolerance of Wolbachia, rather than to the Wolbachia strain used. This study provides an example of strong pathogen inhibition in a naturally Wolbachia-infected mosquito species, demonstrating that this inhibition is not limited to naturally naïve species, and suggests that the Wolbachia strain is more important than host background for viral inhibition. Complete bidirectional cytoplasmic incompatibility was observed with WT strains infected with the naturally occurring Ae. albopictus Wolbachia, and this provides a mechanism for introducing wMel into natural populations of this species.


Journal of Virology | 2014

High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

Anubis Vega-Rúa; Karima Zouache; Romain Girod; Anna-Bella Failloux; Ricardo Lourenço-de-Oliveira

ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN) cases are annually recorded. Indeed, DEN virus and CHIK virus (CHIKV) share the same vectors. Due to a recent CHIK outbreak affecting Caribbean islands, the need for a Pan-American evaluation of vector competence was compelling as a key parameter in assessing the epidemic risk. We demonstrated for the first time that A. aegypti and A. albopictus populations throughout the continent are highly competent to transmit CHIK irrespective of the viral genotypes tested. The risk of CHIK spreading throughout the tropical, subtropical, and even temperate regions of the Americas is more than ever a reality. In light of our results, local authorities should immediately pursue and reinforce epidemiological and entomological surveillance to avoid a severe epidemic.


Vector-borne and Zoonotic Diseases | 2008

Potential vectors of rift valley Fever virus in the Mediterranean region

Sara Moutailler; Ghazi Krida; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux

We evaluated the ability of three mosquito species (Aedes caspius, Aedes detritus, Culex pipiens), collected in southern France and Tunisia, and of different laboratory-established colonies (Aedes aegypti, Aedes albopictus, Aedes vexans, Anopheles gambiae, Culex pipiens, Culex quinquefasciatus) to disseminate two strains of Rift Valley fever virus (RVFV), the virulent ZH548 and the avirulent Clone 13. After feeding on an infectious blood meal at 10(8.5) plaque-forming units/mL, females were maintained at 30 degrees C for 14 days. Surviving females were tested for the presence of virus on head squashes. Disseminated infection rate corresponds to the number of females with disseminated infection among surviving females. Among field-collected mosquitoes, Cx. pipiens was the most susceptible species with disseminated infection rates ranging from 3.9% to 9.1% for French strains and up to 14.7% for Tunisian strains. Among laboratory-established colonies, Ae. aegypti from Tahiti exhibited the highest disseminated infection rates: 90% when infected with ZH548 and 72.6% with Clone 13. The presence of competent Cx. pipiens in southern France and Tunisia indicates the potential for RVFV epizootics to occur if the virus was introduced into countries of the Mediterranean basin.


Genetics Research | 2005

Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

Laurence Mousson; Catherine Dauga; Thomas Garrigues; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux

Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2004

Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses

Ricardo Lourenço-de-Oliveira; Marie Vazeille; A.M.B. de Filippis; Anna-Bella Failloux

Aedes aegypti was eliminated from Brazil in 1955, but re-infested the country in the 1970s. Dengue outbreaks have occurred since 1981 and became endemic in several cities in Brazil after 1986. Urban yellow fever has not occurred since 1942, and only jungle yellow fever cases have been reported. A population genetic analysis using isoenzyme variation combined with an evaluation of susceptibility to both yellow fever and dengue 2 viruses was conducted among 23 A. aegypti samples from 13 Brazilian states. We demonstrated that experimental infection rates of A. aegypti for both dengue and yellow fever viruses (YFV) are high and heterogeneous, and samples collected in the endemic and transition areas of sylvatic yellow fever were highly susceptible to yellow fever virus. Boa Vista, a border city between Brazil and Venezuela, and Rio de Janeiro in the Southeast region are considered as the most important entry points for dengue dissemination. Considering the high densities of A. aegypti, and its high susceptibility to dengue and yellow fever viruses, the risk of dengue epidemics and yellow fever urbanization in Brazil is more real than ever.


PLOS ONE | 2013

High Efficiency of Temperate Aedes albopictus to Transmit Chikungunya and Dengue Viruses in the Southeast of France

Anubis Vega-Rúa; Karima Zouache; Valérie Caro; Laure Diancourt; Pascal Delaunay; Marc Grandadam; Anna-Bella Failloux

Background Since 2005, cases of chikungunya (CHIK) were caused by an unusual vector, Aedes albopictus. This mosquito, present in Europe since 1979, has gained importance since its involvement in the first CHIK outbreak in Italy in 2007. The species is capable of transmitting experimentally 26 arboviruses. However, the vectorial status of its temperate populations has remained little investigated. In 2010, autochthonous cases of CHIK and dengue (DEN) were reported in southeastern France. We evaluated the potential of a French population of Ae. albopictus in the transmission of both viruses. Methodology and Principal Findings We used two strains of each virus, CHIK and DEN: one strain was isolated from an imported case, and one from an autochthonous case. We used as controls Aedes aegypti from India and Martinique, the source of the imported cases of CHIK and DEN, respectively. We showed that Ae. albopictus from Cagnes-sur-Mer (AL-CSM) was as efficient as the typical tropical vector Ae. aegypti from India to experimentally transmit both CHIK strains isolated from patients in Fréjus, with around 35–67% of mosquitoes delivering up to 14 viral particles at day 3 post-infection (pi). The unexpected finding came from the high efficiency of AL-CSM to transmit both strains of DENV-1 isolated from patients in Nice. Almost 67% of Ae. albopictus AL-CSM which have ensured viral dissemination were able to transmit at day 9 pi when less than 21% of the typical DEN vector Ae. aegypti from Martinique could achieve transmission. Conclusions/Significance Temperate Ae. albopictus behaves differently compared to its counterpart from tropical regions, where recurrent epidemic outbreaks occur. Its potential responsibility for outbreaks in Europe should not be minimized.

Collaboration


Dive into the Anna-Bella Failloux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge