Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Vazeille is active.

Publication


Featured researches published by Marie Vazeille.


PLOS ONE | 2007

Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus.

Marie Vazeille; Sara Moutailler; Daniel Coudrier; Claudine Rousseaux; Huot Khun; Michel Huerre; J. Thiria; Jean-Sébastien Dehecq; Didier Fontenille; Isabelle Schuffenecker; Philippe Desprès; Anna-Bella Failloux

Background A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005–2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations. Methodology and Findings We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 107 plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21. Conclusions Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21.


PLOS Neglected Tropical Diseases | 2016

Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

Thais Chouin-Carneiro; Anubis Vega-Rúa; Marie Vazeille; André Yébakima; Romain Girod; Daniella Goindin; Myrielle Dupont-Rouzeyrol; Ricardo Lourenço-de-Oliveira; Anna-Bella Failloux

Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.


PLOS ONE | 2009

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection

Mathieu Dubrulle; Laurence Mousson; Sara Moutailler; Marie Vazeille; Anna-Bella Failloux

Background Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV? Methodology and Findings We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU). Conclusions Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.


Vector-borne and Zoonotic Diseases | 2008

Potential vectors of rift valley Fever virus in the Mediterranean region

Sara Moutailler; Ghazi Krida; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux

We evaluated the ability of three mosquito species (Aedes caspius, Aedes detritus, Culex pipiens), collected in southern France and Tunisia, and of different laboratory-established colonies (Aedes aegypti, Aedes albopictus, Aedes vexans, Anopheles gambiae, Culex pipiens, Culex quinquefasciatus) to disseminate two strains of Rift Valley fever virus (RVFV), the virulent ZH548 and the avirulent Clone 13. After feeding on an infectious blood meal at 10(8.5) plaque-forming units/mL, females were maintained at 30 degrees C for 14 days. Surviving females were tested for the presence of virus on head squashes. Disseminated infection rate corresponds to the number of females with disseminated infection among surviving females. Among field-collected mosquitoes, Cx. pipiens was the most susceptible species with disseminated infection rates ranging from 3.9% to 9.1% for French strains and up to 14.7% for Tunisian strains. Among laboratory-established colonies, Ae. aegypti from Tahiti exhibited the highest disseminated infection rates: 90% when infected with ZH548 and 72.6% with Clone 13. The presence of competent Cx. pipiens in southern France and Tunisia indicates the potential for RVFV epizootics to occur if the virus was introduced into countries of the Mediterranean basin.


Genetics Research | 2005

Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

Laurence Mousson; Catherine Dauga; Thomas Garrigues; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux

Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2004

Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses

Ricardo Lourenço-de-Oliveira; Marie Vazeille; A.M.B. de Filippis; Anna-Bella Failloux

Aedes aegypti was eliminated from Brazil in 1955, but re-infested the country in the 1970s. Dengue outbreaks have occurred since 1981 and became endemic in several cities in Brazil after 1986. Urban yellow fever has not occurred since 1942, and only jungle yellow fever cases have been reported. A population genetic analysis using isoenzyme variation combined with an evaluation of susceptibility to both yellow fever and dengue 2 viruses was conducted among 23 A. aegypti samples from 13 Brazilian states. We demonstrated that experimental infection rates of A. aegypti for both dengue and yellow fever viruses (YFV) are high and heterogeneous, and samples collected in the endemic and transition areas of sylvatic yellow fever were highly susceptible to yellow fever virus. Boa Vista, a border city between Brazil and Venezuela, and Rio de Janeiro in the Southeast region are considered as the most important entry points for dengue dissemination. Considering the high densities of A. aegypti, and its high susceptibility to dengue and yellow fever viruses, the risk of dengue epidemics and yellow fever urbanization in Brazil is more real than ever.


Vector-borne and Zoonotic Diseases | 2008

Vector Competence of Some French Culex and Aedes Mosquitoes for West Nile Virus

Thomas Balenghien; Marie Vazeille; Marc Grandadam; Francis Schaffner; Hervé Zeller; Paul Reiter; Philippe Sabatier; Florence Fouque; Dominique J. Bicout

To identify the mosquito species able to sustain the transmission of West Nile Virus (WNV) in the Camargue region (the main WNV focus of southern France), we assessed the vector competence of Culex modestus and Culex pipiens, the most abundant bird-feeders, and Aedes caspius, the most abundant mammophilic species occasionally found engorged with avian blood. Female mosquitoes were exposed to the infectious meal (10(10.3) plaque forming units (PFU)/mL) by membrane feeding, and hold at 26 degrees C. After the incubation period, disseminated infection was assessed by WNV detection using an indirect fluorescent antibody assay (IFA) on head squashes, and the transmission rate was assessed by the presence of WNV RNA in salivary secretions with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). After 14 incubation days, the disseminated infection and the transmission rates were 89.2% and 54.5% for Cx. modestus, 38.5% and 15.8% for Cx. pipiens, and 0.8% and 0 for Ae. caspius. Culex modestus was found to be an extremely efficient laboratory WNV vector and could thus be considered the main WNV vector in wetlands of the Camargue. Culex pipiens was a moderately efficient laboratory WNV vector, but in dry areas of the region it could play the main role in WNV transmission between birds and from birds to mammals. Aedes caspius was an inefficient vector of WNV in the laboratory, and despite its high densities, its role in WNV transmission may be minor in southern France.


Vector-borne and Zoonotic Diseases | 2012

Chikungunya Virus and the Mosquito Vector Aedes aegypti in New Caledonia (South Pacific Region)

Myrielle Dupont-Rouzeyrol; Valérie Caro; Laurent Guillaumot; Marie Vazeille; Eric D'Ortenzio; Jean-Michel Thiberge; Noémie Baroux; Ann-Claire Gourinat; Marc Grandadam; Anna-Bella Failloux

Chikungunya virus (CHIKV) is transmitted to humans through the bite of Aedes mosquitoes. During the 2005-2006 epidemic that occurred in the Indian Ocean Islands, a viral strain harboring a substitution of an alanine to valine at position 226 (E1-A226V) of the E1 glycoprotein enhanced the transmissibility of CHIKV by Aedes albopictus. In March 2011, autochthonous transmission of CHIKV was reported in New Caledonia (NC), an island located in the southwest Pacific Ocean. This was the first report of local chikungunya (CHIK) transmission in this region of the world. Phylogenetic analysis based on the complete genome demonstrated that the CHIKV-NC strain isolated from the first autochthonous human case belongs to the Asian lineage. This is consistent with the Indonesian origin of CHIK cases previously imported and detected. Thus the CHIKV-NC does not present a valine substitution at position E1-226. In New Caledonia, the putative vector of CHIKV is Aedes aegypti, since no other potential vector has ever been described. For example, A. albopictus is not found in NC. Vector competence experiments showed that A. aegypti from New Caledonia was able to transmit, as early as 3 days post-infection, two CHIKV strains: CHIKV-NC belonging to the Asian lineage, and CHIKV-RE from Reunion Island harboring the E1-A226V mutation. Thus the extrinsic incubation period of both CHIKV strains in this vector species could be considered to be quite short. These results illustrate the threat of the spread of CHIKV in the South Pacific region. From February to June 2011 (the end of the alert), only 33 cases were detected. Implementation of drastic vector control measures and the occurrence of the cold season probably helped to limit the extent of the outbreak, but other factors may have also been involved and are discussed.


PLOS Neglected Tropical Diseases | 2010

Orally Co-Infected Aedes albopictus from La Reunion Island, Indian Ocean, Can Deliver Both Dengue and Chikungunya Infectious Viral Particles in Their Saliva

Marie Vazeille; Laurence Mousson; Estelle Martin; Anna-Bella Failloux

Background First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva. Methodology/Principal Findings We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1. Conclusions/Significance In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon.


PLOS Neglected Tropical Diseases | 2015

Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

Anubis Vega-Rúa; Ricardo Lourenço-de-Oliveira; Laurence Mousson; Marie Vazeille; Sappho Fuchs; André Yébakima; Joël Gustave; Romain Girod; Isabelle Dusfour; Isabelle Leparc-Goffart; Dana L. Vanlandingham; Yan-Jang S. Huang; L. Philip Lounibos; Souand Mohamed Ali; Antoine Nougairede; Xavier de Lamballerie; Anna-Bella Failloux

Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous transmission of CHIKV_SM in Europe despite the hundreds of imported CHIKV cases returning from the Caribbean.

Collaboration


Dive into the Marie Vazeille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Yébakima

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge