Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Borodovsky is active.

Publication


Featured researches published by Anna Borodovsky.


Nature Biotechnology | 2008

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Akin Akinc; Andreas Zumbuehl; Michael Goldberg; Elizaveta S. Leshchiner; Valentina Busini; Naushad Hossain; Sergio Bacallado; David N. Nguyen; Jason Fuller; Rene Alvarez; Anna Borodovsky; Todd Borland; Rainer Constien; Antonin de Fougerolles; J. Robert Dorkin; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Matthias John; Victor Koteliansky; Muthiah Manoharan; Lubomir Nechev; June Qin; Timothy Racie; Denitza Raitcheva; Kallanthottathil G. Rajeev; Dinah Sah; Jürgen Soutschek; Ivanka Toudjarska; Hans-Peter Vornlocher; Tracy Zimmermann

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Nature Nanotechnology | 2012

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

Hyukjin Lee; Abigail K. R. Lytton-Jean; Yi Chen; Kevin Love; Angela I. Park; Emmanouil D. Karagiannis; Alfica Sehgal; William Querbes; Christopher Zurenko; Muthusamy Jayaraman; Chang G. Peng; Klaus Charisse; Anna Borodovsky; Muthiah Manoharan; Jessica S. Donahoe; Jessica Truelove; Matthias Nahrendorf; Robert Langer; Daniel G. Anderson

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).


Nature Biotechnology | 2013

Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape

Jerome Gilleron; William Querbes; Anja Zeigerer; Anna Borodovsky; Giovanni Marsico; Undine Schubert; Kevin Manygoats; Sarah Seifert; Cordula Andree; Martin Stöter; Hila Epstein-Barash; Ligang Zhang; Victor Koteliansky; Kevin Fitzgerald; Eugenio Fava; Marc Bickle; Yannis Kalaidzidis; Akin Akinc; Martin Maier; Marino Zerial

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1–2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


The New England Journal of Medicine | 2017

A Highly Durable RNAi Therapeutic Inhibitor of PCSK9

Kevin Fitzgerald; Suellen White; Anna Borodovsky; Brian Bettencourt; Andrew Strahs; Valerie Clausen; Peter Wijngaard; Jay D. Horton; Jorg Taubel; Ashley Brooks; Chamikara Fernando; Robert S. Kauffman; David Kallend; Akshay Vaishnaw; Amy Simon

BACKGROUND Inclisiran (ALN‐PCSsc) is a long‐acting RNA interference (RNAi) therapeutic agent that inhibits the synthesis of proprotein convertase subtilisin–kexin type 9 (PCSK9), a target for the lowering of low‐density lipoprotein (LDL) cholesterol. METHODS In this phase 1 trial, we randomly assigned healthy volunteers with an LDL cholesterol level of at least 100 mg per deciliter in a 3:1 ratio to receive a subcutaneous injection of inclisiran or placebo in either a single‐ascending‐dose phase (at a dose of 25, 100, 300, 500, or 800 mg) or a multiple‐dose phase (125 mg weekly for four doses, 250 mg every other week for two doses, or 300 or 500 mg monthly for two doses, with or without concurrent statin therapy); each dose cohort included four to eight participants. Safety, the side‐effect profile, and pharmacodynamic measures (PCSK9 level, LDL cholesterol level, and exploratory lipid variables) were evaluated. RESULTS The most common adverse events were cough, musculoskeletal pain, nasopharyngitis, headache, back pain, and diarrhea. All the adverse events were mild or moderate in severity. There were no serious adverse events or discontinuations due to adverse events. There was one grade 3 elevation in the γ‐glutamyltransferase level, which was considered by the investigator to be related to statin therapy. In the single‐dose phase, inclisiran doses of 300 mg or more reduced the PCSK9 level (up to a least‐squares mean reduction of 74.5% from baseline to day 84), and doses of 100 mg or more reduced the LDL cholesterol level (up to a least‐squares mean reduction of 50.6% from baseline). Reductions in the levels of PCSK9 and LDL cholesterol were maintained at day 180 for doses of 300 mg or more. All multiple‐dose regimens reduced the levels of PCSK9 (up to a least‐squares mean reduction of 83.8% from baseline to day 84) and LDL cholesterol (up to a least‐squares mean reduction of 59.7% from baseline to day 84). CONCLUSIONS In this phase 1 trial, no serious adverse events were observed with inclisiran. Doses of 300 mg or more (in single or multiple doses) significantly reduced levels of PCSK9 and LDL cholesterol for at least 6 months. (Funded by Alnylam Pharmaceuticals and the Medicines Company; ClinicalTrials.gov number, NCT02314442.)


Journal of the American College of Cardiology | 2014

In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing

Gabriel Courties; Timo Heidt; Matthew Sebas; Yoshiko Iwamoto; Derrick Jeon; Jessica Truelove; Benoit Tricot; Greg Wojtkiewicz; Partha Dutta; Hendrik B. Sager; Anna Borodovsky; Tatiana Novobrantseva; Boris Klebanov; Kevin Fitzgerald; Daniel G. Anderson; Peter Libby; Filip K. Swirski; Ralph Weissleder; Matthias Nahrendorf

OBJECTIVES The aim of this study was to test whether silencing of the transcription factor interferon regulatory factor 5 (IRF5) in cardiac macrophages improves infarct healing and attenuates post-myocardial infarction (MI) remodeling. BACKGROUND In healing wounds, the M1 toward M2 macrophage phenotype transition supports resolution of inflammation and tissue repair. Persistence of inflammatory M1 macrophages may derail healing and compromise organ functions. The transcription factor IRF5 up-regulates genes associated with M1 macrophages. METHODS Here we used nanoparticle-delivered small interfering ribonucleic acid (siRNA) to silence IRF5 in macrophages residing in MIs and in surgically-induced skin wounds in mice. RESULTS Infarct macrophages expressed high levels of IRF5 during the early inflammatory wound-healing stages (day 4 after coronary ligation), whereas expression of the transcription factor decreased during the resolution of inflammation (day 8). Following in vitro screening, we identified an siRNA sequence that, when delivered by nanoparticles to wound macrophages, efficiently suppressed expression of IRF5 in vivo. Reduction of IRF5 expression, a factor that regulates macrophage polarization, reduced expression of inflammatory M1 macrophage markers, supported resolution of inflammation, accelerated cutaneous and infarct healing, and attenuated development of post-MI heart failure after coronary ligation as measured by protease targeted fluorescence molecular tomography-computed tomography imaging and cardiac magnetic resonance imaging (p < 0.05). CONCLUSIONS This work identified a new therapeutic avenue to augment resolution of inflammation in healing infarcts by macrophage phenotype manipulation. This therapeutic concept may be used to attenuate post-MI remodeling and heart failure.


Molecular therapy. Nucleic acids | 2012

Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

Tatiana Novobrantseva; Anna Borodovsky; Jamie Wong; Boris Klebanov; Mohammad Zafari; Kristina Yucius; William Querbes; Pei Ge; Vera M. Ruda; Rick Duncan; Scott Barros; Genc Basha; Pieter R. Cullis; Akin Akinc; Jessica S. Donahoe; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Roman L. Bogorad; Kevin Love; Katie Whitehead; Chris Levins; Muthiah Manoharan; Filip K. Swirski; Ralph Weissleder; Robert Langer; Daniel G. Anderson; Antonin de Fougerolles; Matthias Nahrendorf; Victor Koteliansky

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.


ChemBioChem | 2015

Hepatocyte‐Specific Delivery of siRNAs Conjugated to Novel Non‐nucleosidic Trivalent N‐Acetylgalactosamine Elicits Robust Gene Silencing in Vivo

Kallanthottathil G. Rajeev; Jayaprakash K. Nair; Muthusamy Jayaraman; Klaus Charisse; Nate Taneja; Jonathan O'Shea; Jennifer L. S. Willoughby; Kristina Yucius; Tuyen Nguyen; Svetlana Shulga-Morskaya; Abigail Liebow; William Querbes; Anna Borodovsky; Kevin Fitzgerald; Martin Maier; Muthiah Manoharan

We recently demonstrated that siRNAs conjugated to triantennary N‐acetylgalactosamine (GalNAc) induce robust RNAi‐mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non‐nucleosidic linker, were developed to yield simplified trivalent GalNAc‐conjugated oligonucleotides under solid‐phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3′‐end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Circulation Research | 2016

Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure

Hendrik B. Sager; Maarten Hulsmans; Kory J. Lavine; Marina Beltrami Moreira; Timo Heidt; Gabriel Courties; Yuan Sun; Yoshiko Iwamoto; Benoit Tricot; Omar F. Khan; James E. Dahlman; Anna Borodovsky; Kevin Fitzgerald; Daniel G. Anderson; Ralph Weissleder; Peter Libby; Filip K. Swirski; Matthias Nahrendorf

RATIONALE Macrophages reside in the healthy myocardium, participate in ischemic heart disease, and modulate myocardial infarction (MI) healing. Their origin and roles in post-MI remodeling of nonischemic remote myocardium, however, remain unclear. OBJECTIVE This study investigated the number, origin, phenotype, and function of remote cardiac macrophages residing in the nonischemic myocardium in mice with chronic heart failure after coronary ligation. METHODS AND RESULTS Eight weeks post MI, fate mapping and flow cytometry revealed that a 2.9-fold increase in remote macrophages results from both increased local macrophage proliferation and monocyte recruitment. Heart failure produced by extensive MI, through activation of the sympathetic nervous system, expanded medullary and extramedullary hematopoiesis. Circulating Ly6C(high) monocytes rose from 64±5 to 108±9 per microliter of blood (P<0.05). Cardiac monocyte recruitment declined in Ccr2(-/-) mice, reducing macrophage numbers in the failing myocardium. Mechanical strain of primary murine and human macrophage cultures promoted cell cycle entry, suggesting that the increased wall tension in post-MI heart failure stimulates local macrophage proliferation. Strained cells activated the mitogen-activated protein kinase pathway, whereas specific inhibitors of this pathway reduced macrophage proliferation in strained cell cultures and in the failing myocardium (P<0.05). Steady-state cardiac macrophages, monocyte-derived macrophages, and locally sourced macrophages isolated from failing myocardium expressed different genes in a pattern distinct from the M1/M2 macrophage polarization paradigm. In vivo silencing of endothelial cell adhesion molecules curbed post-MI monocyte recruitment to the remote myocardium and preserved ejection fraction (27.4±2.4 versus 19.1±2%; P<0.05). CONCLUSIONS Myocardial failure is influenced by an altered myeloid cell repertoire.


Journal of Experimental Medicine | 2015

Macrophages retain hematopoietic stem cells in the spleen via VCAM-1

Partha Dutta; Friedrich Felix Hoyer; Lubov S. Grigoryeva; Hendrik B. Sager; Florian Leuschner; Gabriel Courties; Anna Borodovsky; Tatiana Novobrantseva; Vera M. Ruda; Kevin Fitzgerald; Yoshiko Iwamoto; Gregory R. Wojtkiewicz; Yuan Sun; Nicolas Da Silva; Peter Libby; Daniel G. Anderson; Filip K. Swirski; Ralph Weissleder; Matthias Nahrendorf

Dutta et al. show that targeting VACM-1 expression in splenic macrophages impairs extramedullary hematopoiesis, thus reducing inflammation in mouse ischemic heart and atherosclerotic plaques.


Science Translational Medicine | 2016

RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

Hendrik B. Sager; Partha Dutta; James E. Dahlman; Maarten Hulsmans; Gabriel Courties; Yuan Sun; Timo Heidt; Claudio Vinegoni; Anna Borodovsky; Kevin Fitzgerald; Gregory R. Wojtkiewicz; Yoshiko Iwamoto; Benoit Tricot; Omar F. Khan; Kevin J. Kauffman; Yiping Xing; Taylor E. Shaw; Peter Libby; Robert Langer; Ralph Weissleder; Filip K. Swirski; Daniel G. Anderson; Matthias Nahrendorf

Nanoparticles deliver siRNA for multigene silencing of endothelial cell adhesion molecules, which dampens leukocyte recruitment in atherosclerosis and myocardial infarction in mice. Knocking down adhesion, knocking out inflammation Cells that are central to inflammation lodge in damaged or fatty regions of the vessels (called plaques) by “feeling out” the vessel surface. Neutrophils and monocytes first “roll” along the wall, then firmly plant themselves at an ideal site, and lastly pass through the cells lining the blood vessel: the endothelial cells. This recruitment and transmigration process is mediated by surface receptors called cell adhesion molecules (CAMs). Sager et al. developed a nanomedicine approach to preventing such inflammatory cell adhesion and exacerbation of plaques, by transiently knocking down five different CAMs simultaneously. The authors delivered small interfering RNA (siRNA) targeting the CAMs inside nanoparticles that had been optimized to reach endothelial cells. The five siRNAs reduced leukocyte recruitment to atherosclerotic plaques in mice that were engineered to develop certain features of human atherosclerosis. In the same mice, the siRNAs also attenuated inflammation after myocardial infarction—the equivalent of a heart attack. Current therapies for atherosclerosis and cardiovascular disease do not target inflammatory cells, and this multipronged siRNA-based nanomedicine approach could complement existing options to prevent heart disease from worsening. Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI.

Collaboration


Dive into the Anna Borodovsky's collaboration.

Top Co-Authors

Avatar

Kevin Fitzgerald

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Anderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge