Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Querbes is active.

Publication


Featured researches published by William Querbes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Lipid-like materials for low-dose, in vivo gene silencing

Kevin Love; Kerry P. Mahon; Christopher G. Levins; Kathryn A. Whitehead; William Querbes; J. Robert Dorkin; June Qin; William Cantley; Liu Liang Qin; Timothy Racie; Maria Frank-Kamenetsky; Ka Ning Yip; Rene Alvarez; Dinah Sah; Antonin de Fougerolles; Kevin Fitzgerald; Victor Koteliansky; Akin Akinc; Robert Langer; Daniel G. Anderson

Significant effort has been applied to discover and develop vehicles which can guide small interfering RNAs (siRNA) through the many barriers guarding the interior of target cells. While studies have demonstrated the potential of gene silencing in vivo, improvements in delivery efficacy are required to fulfill the broadest potential of RNA interference therapeutics. Through the combinatorial synthesis and screening of a different class of materials, a formulation has been identified that enables siRNA-directed liver gene silencing in mice at doses below 0.01 mg/kg. This formulation was also shown to specifically inhibit expression of five hepatic genes simultaneously, after a single injection. The potential of this formulation was further validated in nonhuman primates, where high levels of knockdown of the clinically relevant gene transthyretin was observed at doses as low as 0.03 mg/kg. To our knowledge, this formulation facilitates gene silencing at orders-of-magnitude lower doses than required by any previously described siRNA liver delivery system.


Nature Nanotechnology | 2012

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

Hyukjin Lee; Abigail K. R. Lytton-Jean; Yi Chen; Kevin Love; Angela I. Park; Emmanouil D. Karagiannis; Alfica Sehgal; William Querbes; Christopher Zurenko; Muthusamy Jayaraman; Chang G. Peng; Klaus Charisse; Anna Borodovsky; Muthiah Manoharan; Jessica S. Donahoe; Jessica Truelove; Matthias Nahrendorf; Robert Langer; Daniel G. Anderson

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).


Nature Biotechnology | 2013

Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape

Jerome Gilleron; William Querbes; Anja Zeigerer; Anna Borodovsky; Giovanni Marsico; Undine Schubert; Kevin Manygoats; Sarah Seifert; Cordula Andree; Martin Stöter; Hila Epstein-Barash; Ligang Zhang; Victor Koteliansky; Kevin Fitzgerald; Eugenio Fava; Marc Bickle; Yannis Kalaidzidis; Akin Akinc; Martin Maier; Marino Zerial

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1–2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


Molecular Therapy | 2010

Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms

Akin Akinc; William Querbes; Soma De; June Qin; Maria Frank-Kamenetsky; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Kallanthottathil G. Rajeev; William Cantley; J. Robert Dorkin; James Butler; Liuliang Qin; Timothy Racie; Andrew Sprague; Eugenio Fava; Anja Zeigerer; Michael J. Hope; Marino Zerial; Dinah Sah; Kevin Fitzgerald; Mark Tracy; Muthiah Manoharan; Victor Koteliansky; Antonin de Fougerolles; Martin Maier

Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE-/- mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR-/-)-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE(-/-) mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR(-/-))-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates

Yizhou Dong; Kevin Love; J. Robert Dorkin; Sasilada Sirirungruang; Yunlong Zhang; Delai Chen; Roman L. Bogorad; Hao Yin; Yi Chen; Arturo Vegas; Christopher A. Alabi; Gaurav Sahay; Karsten Olejnik; Weiheng Wang; Avi Schroeder; Abigail K. R. Lytton-Jean; Daniel J. Siegwart; Akin Akinc; Carmen Barnes; Scott Barros; Mary Carioto; Kevin Fitzgerald; Julia Hettinger; Varun Kumar; Tatiana Novobrantseva; June Qin; William Querbes; Victor Koteliansky; Robert Langer; Daniel G. Anderson

Significance The safe, selective, and efficient delivery of siRNA is a key challenge to the broad application of siRNA therapeutics in humans. Motivated by the structure of lipoproteins, we developed lipopeptide nanomaterials for siRNA delivery. In vivo in mice, siRNA–lipopeptide particles provide the most potent delivery to hepatocytes (ED50 ∼ 0.002 mg/kg for FVII silencing), with the highest selectivity of delivery to hepatocytes over nontarget cell types (orders of magnitude), yet reported. These materials also show efficacy in nonhuman primates. siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery

Daniel J. Siegwart; Kathryn A. Whitehead; Lutz Nuhn; Gaurav Sahay; Hao Cheng; Shan Jiang; Minglin Ma; Abigail K. R. Lytton-Jean; Arturo Vegas; Patrick Fenton; Christopher G. Levins; Kevin Love; Haeshin Lee; Christina Cortez; Sean P. Collins; Ying Fei Li; Janice Jang; William Querbes; Christopher Zurenko; Tatiana Novobrantseva; Robert Langer; Daniel G. Anderson

Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.


Molecular Therapy | 2013

Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics

Martin Maier; Muthusamy Jayaraman; Shigeo Matsuda; Ju Liu; Scott Barros; William Querbes; Ying K. Tam; Steven M. Ansell; Varun Kumar; June Qin; Xuemei Zhang; Qianfan Wang; Sue Panesar; Renta Hutabarat; Mary Carioto; Julia Hettinger; Pachamuthu Kandasamy; David Butler; Kallanthottathil G. Rajeev; Bo Pang; Klaus Charisse; Kevin Fitzgerald; Barbara L. Mui; Xinyao Du; Pieter R. Cullis; Thomas D. Madden; Michael J. Hope; Muthiah Manoharan; Akin Akinc

In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.


Molecular therapy. Nucleic acids | 2012

Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

Tatiana Novobrantseva; Anna Borodovsky; Jamie Wong; Boris Klebanov; Mohammad Zafari; Kristina Yucius; William Querbes; Pei Ge; Vera M. Ruda; Rick Duncan; Scott Barros; Genc Basha; Pieter R. Cullis; Akin Akinc; Jessica S. Donahoe; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Roman L. Bogorad; Kevin Love; Katie Whitehead; Chris Levins; Muthiah Manoharan; Filip K. Swirski; Ralph Weissleder; Robert Langer; Daniel G. Anderson; Antonin de Fougerolles; Matthias Nahrendorf; Victor Koteliansky

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.


ChemBioChem | 2015

Hepatocyte‐Specific Delivery of siRNAs Conjugated to Novel Non‐nucleosidic Trivalent N‐Acetylgalactosamine Elicits Robust Gene Silencing in Vivo

Kallanthottathil G. Rajeev; Jayaprakash K. Nair; Muthusamy Jayaraman; Klaus Charisse; Nate Taneja; Jonathan O'Shea; Jennifer L. S. Willoughby; Kristina Yucius; Tuyen Nguyen; Svetlana Shulga-Morskaya; Abigail Liebow; William Querbes; Anna Borodovsky; Kevin Fitzgerald; Martin Maier; Muthiah Manoharan

We recently demonstrated that siRNAs conjugated to triantennary N‐acetylgalactosamine (GalNAc) induce robust RNAi‐mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non‐nucleosidic linker, were developed to yield simplified trivalent GalNAc‐conjugated oligonucleotides under solid‐phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3′‐end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Molecular Therapy | 2011

Synergistic Silencing: Combinations of Lipid-like Materials for Efficacious siRNA Delivery

Kathryn A. Whitehead; Gaurav Sahay; George Z Li; Kevin Love; Christopher A. Alabi; Minglin Ma; Christopher Zurenko; William Querbes; Robert Langer; Daniel G. Anderson

Despite the promise of RNA interference (RNAi) therapeutics, progress toward the clinic has been slowed by the difficulty of delivering short interfering RNA (siRNA) into cellular targets within the body. Nearly all siRNA delivery vehicles developed to date employ a single cationic or ionizable material. In order to increase the material space available for development of siRNA delivery therapeutics, this study examined the possibility of using binary combinations of ionizable lipid-like materials to synergistically achieve gene silencing. Interestingly, it was found that ineffective single lipid-like materials could be formulated together in a single delivery vehicle to induce near-complete knockdown of firefly luciferase and factor VII in HeLa cells and in mice, respectively. Microscopy experiments suggested that synergistic action resulted when combining materials that respectively mediated cellular uptake and endosomal escape, two important steps in the delivery process. Together, the data indicate that formulating lipid-like materials in combination can significantly improve siRNA delivery outcomes while increasing the material space available for therapeutic development. It is anticipated that this binary formulation strategy could be applicable to any siRNA delivery material in any target cell population that utilizes the two-step endosomal delivery pathway.

Collaboration


Dive into the William Querbes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Anderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge