Anna Diez-Escudero
Polytechnic University of Catalonia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Diez-Escudero.
ACS Applied Materials & Interfaces | 2017
Albert Barba; Anna Diez-Escudero; Yassine Maazouz; Katrin Rappe; Montserrat Espanol; Edgar B. Montufar; Mar Bonany; Joanna M. Sadowska; Jordi Guillem-Marti; Caroline Öhman-Mägi; Cecilia Persson; Maria-Cristina Manzanares; Jordi Franch; Maria-Pau Ginebra
Some biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and β-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with convex, prismatic macropores induced significant ectopic bone formation. Among them, biomimetic nanostructured CDHA produced the highest incidence of ectopic bone and accelerated bone formation when compared with conventional microstructured sintered calcium phosphates with the same macropore architecture. Moreover, they exhibited different bone formation patterns; in CDHA foams, the new ectopic bone progressively replaced the scaffold, whereas in sintered biphasic calcium phosphate scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. In conclusion, this study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.
Acta Biomaterialia | 2017
Anna Diez-Escudero; Montserrat Espanol; S. Beats; Maria-Pau Ginebra
The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m2/g), whereas in sintered substrates with low SSA (<1m2/g) it resulted just in a linear increase of degradation. Up to 30 % of degradation was registered in biomimetic substrates, compared to 15 % in β-TCP or 8 % in sintered hydroxyapatite. The incorporation of carbonate in calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. STATEMENT OF SIGNIFICANCE The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption. The complexity of isolating the contribution of each parameter lies in the close interrelation between them. In this work, a multiscale study was proposed to discern the extent to which each parameter influences degradation in a variety of calcium phosphates, using an acidic medium to resemble the osteoclastic environment. The results emphasize the importance of textural properties, which can modulate or even outweigh the effect of the intrinsic solubility of the compounds.
Advanced Healthcare Materials | 2018
Anna Diez-Escudero; Montserrat Espanol; Mar Bonany; Xi Lu; Cecilia Persson; Maria-Pau Ginebra
Immune cells play a vital role in regulating bone dynamics. This has boosted the interest in developing biomaterials that can modulate both the immune and skeletal systems. In this study, calcium phosphates discs (i.e., beta-tricalcium phosphate, β-TCP) are functionalized with heparin to investigate the effects on immune and stem cell responses. The results show that the functionalized surfaces downregulate the release of hydrogen peroxide and proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 beta) from human monocytes and neutrophils, compared to nonfunctionalized discs. The macrophages show both elongated and round shapes on the two ceramic substrates, but the morphology of cells on heparinized β-TCP tends toward a higher elongation after 72 h. The heparinized substrates support rat mesenchymal stem cell (MSC) adhesion and proliferation, and anticipate the differentiation toward the osteoblastic lineage as compared to β-TCP and control. The coupling between the inflammatory response and osteogenesis is assessed by culturing MSCs with the macrophage supernatants. The downregulation of inflammation in contact with the heparinized substrates induces higher expression of bone-related markers by MSCs.
Acta Biomaterialia | 2018
Albert Barba; Yassine Maazouz; Anna Diez-Escudero; Katrin Rappe; Montserrat Espanol; Edgar B. Montufar; Caroline Öhman-Mägi; Cecilia Persson; Pedro Fontecha; Maria-Cristina Manzanares; Jordi Franch; Maria-Pau Ginebra
There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.
Nanoscale | 2016
Z. Zhao; Montserrat Espanol; Jordi Guillem-Marti; D. Kempf; Anna Diez-Escudero; Maria-Pau Ginebra
Acta Biomaterialia | 2017
Gabriela Ciapetti; Gemma Di Pompo; Sofia Avnet; D. Martini; Anna Diez-Escudero; Edgar B. Montufar; Maria-Pau Ginebra; Nicola Baldini
Journal of Bone and Joint Surgery-british Volume | 2017
Anna Diez-Escudero; M. Espanol; G. Di Pompo; E. Torreggiani; G. Ciapetti; N. Baldini; Maria-Pau Ginebra
Journal of Bone and Joint Surgery-british Volume | 2017
G. Di Pompo; Anna Diez-Escudero; E. Benjamin Montufar; Montserrat Espanol; G. Ciapetti; N. Baldini; Maria-Pau Ginebra
ED-IADR/NOF Oral Health Research Congress, Vienna | 2017
Albert Barba; Katrin Rappe; P Fontecha; Anna Diez-Escudero; Yassine Maazouz; Montserrat Espanol; Caroline Öhman Mägi; Cecilia Persson; Maria-Cristina Manzanares; Jordi Franch; Maria-Pau Ginebra