Anna Drgova
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Drgova.
Life Sciences | 1999
Ján Lehotský; Peter Kaplan; Peter Racay; M Matejovicova; Anna Drgova; Viera Mézešová
The effect of oxidative stress in vitro induced by radical generating systems (RGS) (Fe2+-EDTA and Fe2+-EDTA plus H2O2) on synaptosomal and microsomal ion transport systems as well as on the membrane fluidity was investigated. Oxidative insult reduced Na+, K+-ATPase activity by 50.7% and Na+-dependent Ca2+ uptake measured in choline media by 46.7%. Membrane fluidity was also significantly reduced as observed with the fluorescent probe. Stobadine (ST) prevented the decrease in membrane fluidity and Na+-dependent Ca2+ uptake, however Na+, K+-ATPase activity was only partially protected, indicating a more complex mechanism of inhibition. Incubation of microsomes with RGS led to the loss of ability of membranes to sequester Ca2+, as well as to the decrease of Ca2+-ATPase activity and to the increase of Ca2+ permeability to 125.1%. The relative potency of the two RGS to decrease membrane fluidity correlated well with the systems potencies to induce lipid peroxidation. The extent of protection against depression of Ca2+ uptake values and Ca2+-ATPase activity by membrane soluble antioxidants (U-74500A, U-83836E, t-butylated hydroxytoluene-BHT and ST) was dependent on the experimental conditions and on the dose and nature of antioxidant used. ST seems to be at least as affective as BHT and 21-aminosteroids, and more potent than tocopherol acetate. Water soluble glutathione had no significant effect on the RGS induced inhibition of Ca2+-ATPase activity. Combination of ST with glutathione enhanced ST antioxidant efficacy, so drug combination might be beneficial therapeutically.
International Journal of Molecular Sciences | 2016
Henrieta Škovierová; Eva Vidomanová; Silvia Mahmood; Janka Sopková; Anna Drgova; Tatiana Červeňová; Erika Halasova; Ján Lehotský
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid derived in methionine metabolism. The increased level of Hcy in plasma, hyperhomocysteinemia, is considered to be an independent risk factor for cardio and cerebrovascular diseases. However, it is still not clear if Hcy is a marker or a causative agent of diseases. More and more research data suggest that Hcy is an important indicator for overall health status. This review represents the current understanding of molecular mechanism of Hcy metabolism and its link to hyperhomocysteinemia-related pathologies in humans. The aberrant Hcy metabolism could lead to the redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity. Additionally, we examine the role of Hcy in thiolation of proteins, which results in their molecular and functional modifications. We also highlight the relationship between the imbalance in Hcy metabolism and pathogenesis of diseases, such as cardiovascular diseases, neurological and psychiatric disorders, chronic kidney disease, bone tissue damages, gastrointestinal disorders, cancer, and congenital defects.
Cellular and Molecular Neurobiology | 2015
Jan Lehotsky; M. Petras; Maria Kovalska; Barbara Tothova; Anna Drgova; Peter Kaplan
Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.
Canadian Journal of Physiology and Pharmacology | 2008
Daniela Mokra; Ingrid Tonhajzerova; Juraj Mokry; Anna Drgova; Petraskova M; Andrea Calkovska; Kamil Javorka
Glucocorticoids may improve lung function in newborns with meconium aspiration syndrome (MAS), but information on the acute side effects of glucocorticoids in infants is limited. In this study using a rabbit model of MAS, we addressed the hypothesis that systemic administration of dexamethasone causes acute cardiovascular changes. Adult rabbits were treated with 2 intravenous doses of dexamethasone (0.5 mg/kg each) or saline at 0.5 h and 2.5 h after intratracheal instillation of human meconium or saline. Animals were oxygen-ventilated for 5 h after the first dose of treatment. Blood pressure, heart rate, and short-term heart rate variability (HRV) were analyzed during treatment, for 5 min immediately after each dose, and for the 5 h of the experiment. In the meconium-instilled animals, dexamethasone increased blood pressure, decreased heart rate, increased HRV parameters, and caused cardiac arrhythmia during and immediately after administration. In the saline-instilled animals, the effect of dexamethasone was inconsistent. In these animals, the acute effects of dexamethasone on blood pressure and cardiac rhythm were reversed after 30 min, whereas heart rate continued to decrease and HRV parameters continued to increase for 5 h after the first dose of dexamethasone. These effects were more pronounced in meconium-instilled animals. If systemic glucocorticoids are used in the treatment of MAS, cardiovascular side effects of glucocorticoids should be considered.
European Journal of Medical Research | 2009
Peter Kaplan; Zuzana Tatarkova; I Engler; Andrea Calkovska; Daniela Mokra; Anna Drgova; Maria Kovalska; Jan Lehotsky; Dusan Dobrota
ObjectiveOxygen therapy is used for the treatment of various diseases, but prolonged exposure to high concentrations of O2 is also associated with formation of free radicals and oxidative damage.MethodsIn the present study we compared α-ketoglutarate dehydrogenase (KGDH) activity and mitochondrial oxidative damage in the hearts of guinea pigs after long-term (17 and 60 h) oxygenation with 100% normobaric O2 and with partially negatively (O2 neg) or positively (O2 posit) ionized oxygen.ResultsInhalation of O2 led to significant loss in KGDH activity and thiol group content and accumulation of bityrosines. Inhalation of O2 neg was accompanied by more pronounced KGDH inhibition, possibly due to additional formation of protein-lipid conjugates. In contrast, O2 posit prevented loss in KGDH activity and diminished mitochondrial oxidative damage.ConclusionsThese findings suggest that oxygen treatment is associated with impairment of heart energy metabolism and support the view that inhalation of O2 posit optimizes the beneficial effects of oxygen therapy.
Acta Paediatrica | 2007
D. Sevecova; Andrea Calkovska; Anna Drgova; Michal Javorka; Petraskova M; Kamil Javorka
Aim: To determine the efficacy of the expulsion effect of high‐frequency jet ventilation (HFJV) on meconium clearance from the airways in comparison with conventional suctioning in adult rabbits with meconium aspiration. Methods: Experiments were carried out on tracheotomized, anaesthetized and paralysed adult rabbits. A suspension of human meconium in saline (25mg ml−1, 4 ml kg−1) was instilled into the tracheal cannula. When respiratory failure developed, saline lavage (10ml kg−1 in 3 portions) was performed during conventional ventilation or by means of the inpulsion and expulsion regime of HFJV. Animals were further ventilated for 2 h with either conventional ventilation or HFJV. Results: There was no significant difference between groups in the amount of meconium recovered by lavage. Compared to conventional ventilation, the application of HFJV enhanced the elimination of carbon dioxide, increased lung compliance and diminished right‐to‐left shunts after 30 min of ventilatory treatment. Oxygenation also improved during HFJV, although this was not a consistent finding during the ventilation period.
Advances in Experimental Medicine and Biology | 2013
Daniela Mokra; Anna Drgova; Jana Kopincova; Rudolf Pullmann; Andrea Calkovska
Inflammation, oxidation, lung edema, and other factors participate in surfactant dysfunction in meconium aspiration syndrome (MAS). Therefore, we hypothesized that anti-inflammatory treatment may reverse surfactant dysfunction in the MAS model. Oxygen-ventilated rabbits were given meconium intratracheally (25 mg/ml, 4 ml/kg; Mec) or saline (Sal). Thirty minutes later, meconium-instilled animals were treated by glucocorticoids budesonide (0.25 mg/kg, i.t.) and dexamethasone (0.5 mg/kg, i.v.), or phosphodiesterase inhibitors aminophylline (2 mg/kg, i.v.) and olprinone (0.2 mg/kg, i.v.), or the antioxidant N-acetylcysteine (10 mg/kg, i.v.). Healthy, non-ventilated animals served as controls (Con). At the end of experiments, left lung was lavaged and a differential leukocyte count in sediment was estimated. The supernatant of lavage fluid was adjusted to a concentration of 0.5 mg phospholipids/ml. Surfactant quality was evaluated by capillary surfactometer and expressed by initial pressure and the time of capillary patency. The right lung was used to determine lung edema by wet/dry (W/D) weight ratio. Total antioxidant status (TAS) in blood plasma was evaluated. W/D ratio increased and capillary patency time shortened significantly, whereas the initial pressure increased and TAS decreased insignificantly in Sal vs. Con groups. Meconium instillation potentiated edema formation and neutrophil influx into the lungs, reduced capillary patency and TAS, and decreased the surfactant quality compared with both Sal and Con groups (p > 0.05). Each of the anti-inflammatory agents reduced lung edema and neutrophil influx into the lung and partly reversed surfactant dysfunction in the MAS model, with a superior effect observed after glucocorticoids and the antioxidant N-acetylcysteine.
General Physiology and Biophysics | 2012
Zuzana Tatarkova; Ivan Engler; Andrea Calkovska; Daniela Mokra; Anna Drgova; Stanislav Kuka; Peter Racay; Jan Lehotsky; Dusan Dobrota; Peter Kaplan
Normobaric oxygen (NBO) therapy is commonly applied for the treatment of various diseases, including myocardial infarctions, but its effectiveness is controversial. Potential adverse effects of hyperoxia are related to excessive formation of free radicals. In the present study we examined the effect of 60-h NBO treatment on lipid peroxidation (LPO), activity of manganese superoxide dismutase (Mn-SOD) and mitochondrial enzymes of energy metabolism in guinea pig heart. NBO treatment resulted in significant accumulation of thiobarbituric acid reactive substances and loss of Mn-SOD activity despite slight elevation of Mn-SOD protein content. Activity of electron transport chain complex III decreased significantly, while activity of complex IV was slightly elevated and citrate synthase was unchanged. LPO, inhibition of Mn-SOD and complex III activities were more pronounced when inhaled oxygen was partially enriched with superoxide radical. In contrast, when O(2) was enriched with oxygen cation (O(2)●+), LPO and loss of Mn-SOD activity were prevented. Complex III activity in the O(2)●+-treated group remained depressed but activities of complex IV and citrate synthase were elevated. These data suggest that NBO treatment is associated with myocardial oxidative damage and attenuation of antioxidant defense, but these adverse effects can be partially attenuated by inhalation of O(2) enriched with oxygen cation.
Acta Medica Martiniana | 2012
Daniela Mokra; Anna Drgova; Rudolf Pullmann; Pavol Mikolka; Martina Antosova; Juraj Mokry
Changes in Several Inflammatory and Oxidation Markers after Ovalbumin-Sensitization in a Guinea Pig Model of Allergic Asthma - A Pilot Study Ovalbumin (OVA)-sensitization is a common way to evoke changes similar to changes in allergic asthma in humans. Activated cells produce various pro-inflammatory and vasoactive substances including reactive oxygen species. The goal of this pilot study was to evaluate mobilization of leukocytes into the lungs and oxidation processes induced by OVA-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naïve animals. After sacrificing animals, blood samples were taken and total and differential leukocyte counts were calculated, and eosinophil cationic protein (ECP) and total antioxidant status (TAS) in the plasma were determined. Left lungs were saline-lavaged and total number of cells and differential leukocyte count in the bronchoalveolar lavage fluid (BAL) were calculated. Right lung tissue was homogenized, ECP, TAS and products of lipid and protein oxidation (thiobarbituric acid-reactive substances and lysine-lipoperoxidation end-products) were determined in the lung homogenate. OVA-sensitization increased a total number of cells and percentages of eosinophils and neutrophils and slightly increased ECP in the blood and in the BAL fluid. In addition, increased lipid and protein oxidation in the lung homogenate, and decreased TAS in the plasma was found in OVA-sensitized compared to naïve animals. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of reactive oxygen spesies (ROS), accompanied by a decrease in plasma TAS.
Neurochemical Research | 2005
Dusan Dobrota; T. N. Fedorova; Sergey Stvolinsky; Eva Babusikova; Katarina Likavcanova; Anna Drgova; Adriana Strapkova; Alexander Boldyrev