Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Kaplan is active.

Publication


Featured researches published by Peter Kaplan.


Molecular and Cellular Biochemistry | 2003

Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum

Peter Kaplan; Eva Babusikova; Jan Lehotsky; Dusan Dobrota

The effect of oxidative stress on the Ca2+-ATPase activity, lipid peroxidation and protein modification of cardiac sarcoplasmic reticulum (SR) membranes was investigated. Isolated SR vesicles were exposed to FeSO4/EDTA (0.2 μmol Fe2+ per mg of protein) at 37°C for 1 h in the presence or absence of antioxidants. FeSO4/EDTA decreased the maximum velocity of Ca2+-ATPase reaction without a change of affinity for Ca2+ or Hill coefficient. Treatment with radical-generating system led also to conjugated diene formation, loss of sulfhydryl groups, changes in tryptophan and bityrosine fluorescences and to production of lysine conjugates with lipid peroxidation end-products. Lipid antioxidants butylated hydroxytoluene (BHT) and stobadine partially prevented inhibition of Ca2+-ATPase and decrease in tryptophan fluorescence, while the loss of –SH groups and formation of bityrosines or lysine conjugates were completely prevented. Glutathione also partially protected Ca2+-ATPase activity and decreased formation of bityrosine, but it was not able to prevent oxidative modification of tryptophan and lysine. These findings suggest that combination of amino acid modifications, rather than oxidation of amino acids of one kind, is responsible for inhibition of SR Ca2+-ATPase activity.


Life Sciences | 1999

Membrane ion transport systems during oxidative stress in rodent brain: protective effect of stobadine and other antioxidants.

Ján Lehotský; Peter Kaplan; Peter Racay; M Matejovicova; Anna Drgova; Viera Mézešová

The effect of oxidative stress in vitro induced by radical generating systems (RGS) (Fe2+-EDTA and Fe2+-EDTA plus H2O2) on synaptosomal and microsomal ion transport systems as well as on the membrane fluidity was investigated. Oxidative insult reduced Na+, K+-ATPase activity by 50.7% and Na+-dependent Ca2+ uptake measured in choline media by 46.7%. Membrane fluidity was also significantly reduced as observed with the fluorescent probe. Stobadine (ST) prevented the decrease in membrane fluidity and Na+-dependent Ca2+ uptake, however Na+, K+-ATPase activity was only partially protected, indicating a more complex mechanism of inhibition. Incubation of microsomes with RGS led to the loss of ability of membranes to sequester Ca2+, as well as to the decrease of Ca2+-ATPase activity and to the increase of Ca2+ permeability to 125.1%. The relative potency of the two RGS to decrease membrane fluidity correlated well with the systems potencies to induce lipid peroxidation. The extent of protection against depression of Ca2+ uptake values and Ca2+-ATPase activity by membrane soluble antioxidants (U-74500A, U-83836E, t-butylated hydroxytoluene-BHT and ST) was dependent on the experimental conditions and on the dose and nature of antioxidant used. ST seems to be at least as affective as BHT and 21-aminosteroids, and more potent than tocopherol acetate. Water soluble glutathione had no significant effect on the RGS induced inhibition of Ca2+-ATPase activity. Combination of ST with glutathione enhanced ST antioxidant efficacy, so drug combination might be beneficial therapeutically.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009

Ischemic Tolerance: The Mechanisms of Neuroprotective Strategy

Ján Lehotský; Jozef Burda; Viera Danielisová; Miroslav Gottlieb; Peter Kaplan; Beata Saniova

The phenomenon of ischemic tolerance perfectly describes this quote “What does not kill you makes you stronger.” Ischemic pre‐ or postconditioning is actually the strongest known procedure to prevent or reverse neurodegeneration. It works specifically in sensitive vulnerable neuronal populations, which are represented by pyramidal neurons in the hippocampal CA1 region. However, tolerance is effective in other brain cell populations as well. Although, its nomenclature is “ischemic” tolerance, the tolerant phenotype can also be induced by other stimuli that lead to delayed neuronal death (intoxication). Moreover, the recent data have proven that this phenomenon is not limited to application of sublethal stimuli before the lethal stress but reversed arrangement of events, sublethal stress after lethal insult, is rather equally effective. A very important term is called “cross conditioning.” Cross conditioning is the capability of one stressor to induce tolerance against another. So, since pre‐ or post‐conditioners can be used plenty of harmful stimuli, hypo‐ or hyperthermia and some physiological compounds, such as norepinephrine, bradykinin. Delayed neuronal death is the slow development of postischemic neurodegeneration. This allows an opportunity for a great therapeutic window of 2–3 days to reverse the cellular death process. Moreover, it seems that the mechanisms of ischemic tolerance‐delayed postconditioning could be used not only after ischemia but also in some other processes leading to apoptosis. Anat Rec, 292:2002–2012, 2009.


Circulation Research | 1992

Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake.

Peter Kaplan; M Hendrikx; M. Mattheussen; Kanigula Mubagwa; Willem Flameng

To investigate the mechanism underlying postischemic cardiac dysfunction (myocardial stunning), contractility and adenine nucleotide metabolism were studied in three groups of isolated perfused rabbit hearts (control, ischemic, and reperfused), whereas Ca2+ uptake by the sarcoplasmic reticulum (SR) was measured in homogenates obtained from them. The hearts were Langendorff-perfused under constant pressure with Krebs-Henseleit solution at 37 degrees C. Global normothermic ischemia was produced by closing the perfusion line. In the reperfused group, after 15 minutes of ischemia, Krebs-Henseleit solution was perfused for 10 minutes. Developed left ventricular pressure (control, 104 +/- 6.3 mm Hg) and left ventricular dP/dt (2,063 +/- 256.6 mm Hg.sec-1) were significantly decreased in reperfused hearts (left ventricular pressure, 78 +/- 5.9 mm Hg; left ventricular dP/dt, 1,339 +/- 216.3 mm Hg.sec-1). Myocardial ATP content (control, 13.6 +/- 0.98 mumol/g dry wt) decreased during ischemia (4.5 +/- 1.23 mumol/g) but was restored to control level on reperfusion (11.8 +/- 0.68 mumol/g). Maximum velocity of Ca2+ uptake by the SR (Vmax) (control, 49.3 +/- 2.54 nmol.min-1 x mg-1) was significantly depressed by ischemia (36.3 +/- 1.94 nmol.min-1 x mg-1) but was restored to the control value after a 10-minute reperfusion (45.3 +/- 0.79 nmol.min-1 x mg-1). Apparent dissociation constant KCa and the Hill coefficient for Ca2+ uptake were not different between control, ischemia, and reperfusion. To test for the possible role of the SR Ca(2+)-release channel in the effect of ischemia and reperfusion, we measured Ca2+ uptake after incubation of homogenates with 610 microM ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)


Iubmb Life | 1997

Lipid peroxidation both inhibits Ca2 ‐ATPase and increases Ca2 permeability of endoplasmic reticulum membrane

Peter Racay; Peter Kaplan; Viera Mézešová; Ján Lehotský

Incubation of reticular membranes with Fe2+‐EDTA and H2O2 plus Fe2+‐EDTA at 37 °C for 30 min. led to the loss of membranes efficiency to sequester Ca2+ to 21.8 % and 3.6 % of control values, respectively. The incubation of microsomes with Fe2+‐EDTA and H2O2 plus Fe2+‐EDTA also caused decrease of Ca2+‐ATPase activity; to 44.9 % and 44.4 % (measured under the same conditions as Ca2+‐uptake) or to 79.6 % and 62.1 % (uncoupled from Ca2+ transport by detergent). In addition, incubation of membranes with Fe2+‐EDTA and H2O2 plus Fe2+‐EDTA at 37 °C for 30 min. led to the increase of Ca2+ permeability to 125.1 % and 124.2 %, respectively. Preincubation of membranes with membrane‐soluble antioxidants (U‐74500A, U‐83836E, t‐butyl hydroxytoluene and stobadine) protected the reticular membranes against depression of Ca2+ uptake values and Ca2+‐ATPase inhibition in a dose and an antioxidant nature dependent manner. Our results indicate that both processes, Ca2+‐ATPase inhibition and increase of endoplasmic reticulum membrane Ca2+ permeability, participate in the lipid peroxidation induced loss of membranes efficiency to sequester Ca2+.


Redox Report | 2007

Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal

Peter Kaplan; Zuzana Tatarkova; Peter Racay; Jan Lehotsky; Martina Pavlikova; Dusan Dobrota

Abstract 4-Hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 ± 1.0 μM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO• radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE–protein adducts and oxidation of membrane lipids and proteins by free radicals.


Neurochemistry International | 1999

Distribution of plasma membrane Ca2+ pump (PMCA) isoforms in the gerbil brain: effect of ischemia-reperfusion injury.

Ján Lehotský; Peter Kaplan; Peter Racay; Viera Mézešová; Luc Raeymaekers

Non-species isoform-specific antibodies against three isoforms of the plasma membrane Ca2+ pump (PMCA) were used for immuno-localization of PMCA by Western blot analysis in membrane preparations isolated from different regions of gerbil brain. All three gene products were detected in the membranes from hippocampus, cerebral cortex and cerebellum. However, they showed a distinct distribution pattern. Two proteins were revealed in the case of PMCA1 with molecular masses 129 and 135 kDa. The antibody against PMCA2 recognized three proteins of about 130-137 kDa. Only one protein was detected with the anti-PMCA3 antibody. Levels of immuno-signal for the PMCA isoforms varied significantly among the different brain regions. The PMCA1 is the most abundant in the cerebro-cortical and hippocampal membrane preparations. The PMCA2 was detected in a lesser amount comparing to PMCA1 and was highest in the membrane preparations from cerebellum and in a slightly lesser amount from cerebral cortex. Anti-PMCA3 antibody stained weakly and was localized in the cerebellar and hippocampal membrane preparations. Transient forebrain ischemia (10 min) and reperfusion (for a prolonged period up to 10 d) leads to a significant decrease of PMCA immuno-signal. This decrease could be ascribed to the loss of PMCA1 signal, especially in hippocampal membrane preparations.


The International Journal of Biochemistry & Cell Biology | 2000

Iron-induced lipid peroxidation and protein modification in endoplasmic reticulum membranes. Protection by stobadine

Peter Kaplan; Michal Doval; Zuzana Majerová; Ján Lehotský; Peter Racay

Treatment with FeSO(4)/EDTA (0.2 micromol Fe(II) per mg of protein) was used to study the effect of oxidative stress on lipid peroxidation and structural properties of endoplasmic reticulum (ER) membranes isolated from rabbit brain. Oxidative stress resulted in conjugated diene formation and a decrease of 1-anilino-8-naphthalenesulfonate (ANS) fluorescence in a time-dependent manner. In contrast, fluorescence anisotropy of 1, 6-diphenyl-1,3,5-hexatriene was increased early after the initiation of lipid peroxidation and no further increase was observed after 1, 2 and 3 h of peroxidation. FeSO(4)/EDTA treatment was accompanied by formation of conjugates of lipid peroxidation products with membrane proteins, as detected by the increase in fluorescence excitation (350-360 nm) and emission (440-450 nm) maximum. Oxidative stress also induced a marked decrease of the intrinsic fluorescence of aromatic amino acids, suggesting modification or changes in the environment of these amino acid residue(s). The lipid antioxidant, stobadine, completely prevented the changes of ANS fluorescence and production of peroxidized lipid-protein conjugates whereas tryptophan fluorescence was only partially protected. These results suggest that Fe(II) induces both lipid-mediated- and lipid peroxidation independent-modification of ER membrane proteins. The study also demonstrates that stobadine is a potent inhibitor of Fe(II)-induced protein modification.


Cellular and Molecular Neurobiology | 2006

Distribution of secretory pathway Ca2+ ATPase (SPCA1) in neuronal and glial cell cultures.

Radovan Murín; Stephan Verleysdonk; Luc Raeymaekers; Peter Kaplan; Ján Lehotský

1. Secretory pathway Ca2+ ATPase type 1 (SPCA1) is a newly recognized Ca2+/Mn2+-transporting pump localized in membranes of the Golgi apparatus.2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues.3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains.4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells.5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically.6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, α-tubulin or MBP.7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells.8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.


Neurochemical Research | 1997

Iron-induced inhibition of Na+, K(+)-ATPase and Na+/Ca2+ exchanger in synaptosomes: protection by the pyridoindole stobadine.

Peter Kaplan; M Matejovicova; Viera Mézešová

The effect of oxidative stress, induced by Fe2+-EDTA system, on Na+,K+-ATPase, Na+/Ca2+ exchanger and membrane fluidity of synaptosomes was investigated. Synaptosomes isolated from gerbil whole forebrain were incubated in the presence of 200 μM FeSO4-EDTA per mg of protein at 37°C for 30 min. The oxidative insult reduced Na+,K+-ATPase activity by 50.7 ± 5.0 % and Na+/Ca2+ exchanger activity measured in potassium and choline media by 47.1 ± 7.2 % and 46.7 ± 8.6 %, respectively. Membrane fluidity was also significantly reduced as observed with the 1,6-diphenyl-1,3,5-hexatriene probe. Stobadine, a pyridoindole derivative, prevented the decrease in membrane fluidity and in Na+/Ca2+ exchanger activity. The Na+,K+-ATPase activity was only partially protected by this lipid antioxidant, indicating a more complex mechanism of inhibition of this protein. The results of the present study suggest that the Na+/Ca2+ exchanger and the Na+,K+-ATPase are involved in oxidation stress-mediated disturbances of intracellular ion homeostasis and may contribute to cell injury.

Collaboration


Dive into the Peter Kaplan's collaboration.

Top Co-Authors

Avatar

Ján Lehotský

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Peter Racay

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Zuzana Tatarkova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Dusan Dobrota

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Jan Lehotsky

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Eva Babusikova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Anna Drgova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Willem Flameng

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

M Matejovicova

Jessenius Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maria Kovalska

Comenius University in Bratislava

View shared research outputs
Researchain Logo
Decentralizing Knowledge