Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna E. Hogg is active.

Publication


Featured researches published by Anna E. Hogg.


Geophysical Research Letters | 2014

Increased ice losses from Antarctica detected by CryoSat‐2

Malcolm McMillan; Andrew Shepherd; Aud Venke Sundal; Kate Briggs; Alan Muir; Andrew Ridout; Anna E. Hogg; Duncan J. Wingham

We use 3 years of Cryosat-2 radar altimeter data to develop the first comprehensive assessment of Antarctic ice sheet elevation change. This new data set provides near-continuous (96%) coverage of the entire continent, extending to within 215 km of the South Pole and leading to a fivefold increase in the sampling of coastal regions where the vast majority of all ice losses occur. Between 2010 and 2013, West Antarctica, East Antarctica, and the Antarctic Peninsula changed in mass by −134 ± 27, −3 ± 36, and −23 ± 18 Gt yr−1, respectively. In West Antarctica, signals of imbalance are present in areas that were poorly surveyed by past missions, contributing additional losses that bring altimeter observations closer to estimates based on other geodetic techniques. However, the average rate of ice thinning in West Antarctica has also continued to rise, and mass losses from this sector are now 31% greater than over the period 2005–2010.


Geophysical Research Letters | 2016

A high‐resolution record of Greenland mass balance

Malcolm McMillan; Amber Leeson; Andrew Shepherd; Kate Briggs; Thomas W. K. Armitage; Anna E. Hogg; Peter Kuipers Munneke; Michiel R. van den Broeke; Brice Noël; Willem Jan van de Berg; Stefan R. M. Ligtenberg; Martin Horwath; Andreas Groh; Alan Muir; Lin Gilbert

We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011–2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland’s area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.


Geophysical Research Letters | 2014

Rapid dynamic activation of a marine‐based Arctic ice cap

Malcolm McMillan; Andrew Shepherd; Noel Gourmelen; Amaury Dehecq; Amber Leeson; Andrew Ridout; Thomas Flament; Anna E. Hogg; Lin Gilbert; Toby Benham; Michiel R. van den Broeke; Julian A. Dowdeswell; Xavier Fettweis; Brice Noël; Tazio Strozzi

We use satellite observations to document rapid acceleration and ice loss from a formerly slow-flowing, marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. During the past two decades, the sector ice discharge has increased 45-fold, the velocity regime has switched from predominantly slow (~ 101 m/yr) to fast (~ 103 m/yr) flow, and rates of ice thinning have exceeded 25 m/yr. At the time of widespread dynamic activation, parts of the terminus may have been near floatation. Subsequently, the imbalance has propagated 50 km inland to within 8 km of the ice cap summit. Our observations demonstrate the ability of slow-flowing ice to mobilize and quickly transmit the dynamic imbalance inland; a process that we show has initiated rapid ice loss to the ocean and redistribution of ice mass to locations more susceptible to melt, yet which remains poorly understood.


Geophysical Research Letters | 2017

Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica

Hannes Konrad; Lin Gilbert; Stephen L. Cornford; Antony J. Payne; Anna E. Hogg; Alan Muir; Andrew Shepherd

We combine measurements acquired by five satellite altimeter missions to obtain an uninterrupted record of ice sheet elevation change over the Amundsen Sea Embayment, West Antarctica, since 1992. Using these data, we examine the onset of surface lowering arising through ice-dynamical imbalance, and the pace at which it has propagated inland, by tracking elevation changes along glacier flow lines. Surface lowering has spread slowest (<6 km/yr) along the Pope, Smith, and Kohler (PSK) Glaciers, due to their small extent. Pine Island Glacier (PIG) is characterized by a continuous inland spreading of surface lowering, notably fast at rates of 13 to 15 km/yr along tributaries draining the southeastern lobe, possibly due to basal conditions or tributary geometry. Surface lowering on Thwaites Glacier (THG) has been episodic and has spread inland fastest (10 to 12 km/yr) along its central flow lines. The current episodes of surface lowering started approximately 10 years before the first measurements on PSK, around 1990 on PIG, and around 2000 on THG. Ice-dynamical imbalance across the sector has therefore been uneven during the satellite record.


Geophysical Research Letters | 2017

Increased ice flow in Western Palmer Land linked to ocean melting

Anna E. Hogg; Andrew Shepherd; Stephen L. Cornford; Kate Briggs; Noel Gourmelen; Jennifer A. Graham; Ian Joughin; J. Mouginot; Thomas Nagler; Antony J. Payne; Eric Rignot; Jan Wuite

A decrease in the mass and volume of Western Palmer Land has raised the prospect that ice speed has increased in this marine-based sector of Antarctica. To assess this possibility, we measure ice velocity over 25 years using satellite imagery and an optimised modelling approach. More than 30 unnamed outlet glaciers drain the 800 km coastline of Western Palmer Land at speeds ranging from 0.5 to 2.5 m/day, interspersed with near-stagnant ice. Between 1992 and 2015, most of the outlet glaciers sped up by 0.2 to 0.3 m/day, leading to a 13 % increase in ice flow and a 15 km3/yr increase in ice discharge across the sector as a whole. Speedup is greatest where glaciers are grounded more than 300 m below sea level, consistent with a loss of buttressing caused by ice shelf thinning in a region of shoaling warm circumpolar water.


Geophysical Research Letters | 2017

Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

Noel Gourmelen; Daniel Goldberg; Kate Snow; Sian F. Henley; Robert G. Bingham; Satoshi Kimura; Anna E. Hogg; Andrew Shepherd; J. Mouginot; Jan T. M. Lenaerts; Stefan R. M. Ligtenberg; Willem Jan van de Berg

Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelfs grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40–50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.


Nature Geoscience | 2018

Net retreat of Antarctic glacier grounding lines

Hannes Konrad; Andrew Shepherd; Lin Gilbert; Anna E. Hogg; Malcolm McMillan; Alan Muir; Thomas Slater

Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surrounding ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter observations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire continent, tripling the coverage of previous surveys. Between 2010 and 2016, 22%, 3% and 10% of surveyed grounding lines in West Antarctica, East Antarctica and at the Antarctic Peninsula retreated at rates faster than 25 m yr−1 (the typical pace since the Last Glacial Maximum) and the continent has lost 1,463 km2 ± 791 km2 of grounded-ice area. Although by far the fastest rates of retreat occurred in the Amundsen Sea sector, we show that the Pine Island Glacier grounding line has stabilized, probably as a consequence of abated ocean forcing. On average, Antarctica’s fast-flowing ice streams retreat by 110 metres per metre of ice thinning.Grounding lines in parts of West Antarctica, East Antarctica and the Antarctic Peninsula retreated faster than typical post-glacial pace, according to satellite observations and ice geometry measurements.


Annals of Glaciology | 2018

Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling

Jan T. M. Lenaerts; Stefan R. M. Ligtenberg; Brooke Medley; Willem Jan van de Berg; Hannes Konrad; Julien P. Nicolas; J. Melchior van Wessem; Luke D. Trusel; Robert Mulvaney; Rebecca Tuckwell; Anna E. Hogg; Elizabeth R. Thomas

ABSTRACT West Antarctic climate and surface mass balance (SMB) records are sparse. To fill this gap, regional atmospheric climate modelling is useful, providing that such models are employed at sufficiently high horizontal resolution and coupled with a snow model. Here we present the results of a high-resolution (5.5 km) regional atmospheric climate model (RACMO2) simulation of coastal West Antarctica for the period 1979–2015. We evaluate the results with available in situ weather observations, remote-sensing estimates of surface melt, and SMB estimates derived from radar and firn cores. Moreover, results are compared with those from a lower-resolution version, to assess the added value of the resolution. The high-resolution model resolves small-scale climate variability invoked by topography, such as the relatively warm conditions over ice-shelf grounding zones, and local wind speed accelerations. Surface melt and SMB are well reproduced by RACMO2. This dataset will prove useful for picking ice core locations, converting elevation changes to mass changes, for driving ocean, ice-sheet and coupled models, and for attributing changes in the West Antarctic Ice Sheet and shelves to changes in atmospheric forcing.


The Cryosphere Discussions | 2018

Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery

Adriano Lemos; Andrew Shepherd; Malcolm McMillan; Anna E. Hogg; Emma Hatton; Ian Joughin

Systematically monitoring Greenland’s outlet glaciers is central to understanding the timescales over which their flow and sea level contributions evolve. In this study we use data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps, covering four key outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These data provide a new high temporal resolution record (6-day averaged solutions) of each glacier’s evolution since 2014, and resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet glacier speed with an estimated certainty of 10 %. We find that since 2012, Jakobshavn Isbræ has been decelerating, and now flows approximately 1250 m yr−1 (10 %), slower than 5 years previously, thus reversing an increasing trend in ice velocity that has persisted during the last decade. Despite this, we show that seasonal variability in ice velocity remains significant: up to 750 m yr−1 (14 %) at a distance of 12 km inland of the terminus. We also use our new dataset to estimate the duration of speedup periods (80–95 days) and to demonstrate a strong relationship between ice front position and ice flow at Jakobshavn Isbræ, with increases in speed of ∼ 1800 m yr−1 in response to 1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25 % (2015) and 18 % (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively. This study provides a first demonstration of the capacity of a new era of operational radar satellites to provide frequent and timely monitoring of ice sheet flow, and to better resolve the timescales over which glacier dynamics evolve.


Journal of Glaciology | 2013

A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet

Amber Leeson; Andrew Shepherd; Aud Venke Sundal; A. Malin Johansson; Nick Selmes; Kate Briggs; Anna E. Hogg; Xavier Fettweis

Collaboration


Dive into the Anna E. Hogg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Muir

University College London

View shared research outputs
Top Co-Authors

Avatar

Lin Gilbert

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge