Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Elliott is active.

Publication


Featured researches published by Anna Elliott.


Nature Genetics | 2007

PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene

Nazneen Rahman; Sheila Seal; Deborah Thompson; Patrick Kelly; Anthony Renwick; Anna Elliott; Sarah Reid; Katarina Spanova; Rita Barfoot; Tasnim Chagtai; Hiran Jayatilake; Lesley McGuffog; Sandra Hanks; D. Gareth Evans; Diana Eccles; Douglas F. Easton; Michael R. Stratton

PALB2 interacts with BRCA2, and biallelic mutations in PALB2 (also known as FANCN), similar to biallelic BRCA2 mutations, cause Fanconi anemia. We identified monoallelic truncating PALB2 mutations in 10/923 individuals with familial breast cancer compared with 0/1,084 controls (P = 0.0004) and show that such mutations confer a 2.3-fold higher risk of breast cancer (95% confidence interval (c.i.) = 1.4–3.9, P = 0.0025). The results show that PALB2 is a breast cancer susceptibility gene and further demonstrate the close relationship of the Fanconi anemia–DNA repair pathway and breast cancer predisposition.


Nature Genetics | 2006

Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles

Sheila Seal; Deborah Thompson; Anthony Renwick; Anna Elliott; Patrick Kelly; Rita Barfoot; Tasnim Chagtai; Hiran Jayatilake; Munaza Ahmed; Katarina Spanova; Bernard North; Lesley McGuffog; D. Gareth Evans; Diana Eccles; Douglas F. Easton; Michael R. Stratton; Nazneen Rahman

We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation–negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2–3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers.


Nature Genetics | 2011

Mutations in CEP57 cause mosaic variegated aneuploidy syndrome

Katie Snape; Sandra Hanks; Elise Ruark; Patricio Barros-Núñez; Anna Elliott; Anne Murray; Andrew H Lane; Nora Shannon; Patrick Callier; David Chitayat; Jill Clayton-Smith; David Fitzpatrick; David Gisselsson; Sébastien Jacquemont; Keiko Asakura-Hay; Mark Micale; John Tolmie; Peter D. Turnpenny; Michael Wright; Jenny Douglas; Nazneen Rahman

Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.


Nature Communications | 2014

Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour

Sandra Hanks; Elizabeth R Perdeaux; Sheila Seal; Elise Ruark; Shazia Mahamdallie; Anne Murray; Emma Ramsay; Silvana Del Vecchio Duarte; Anna Zachariou; Bianca de Souza; Margaret Warren-Perry; Anna Elliott; Alan R. Davidson; Helen Price; Charles Stiller; Kathy Pritchard-Jones; Nazneen Rahman

Wilms tumour is a childhood kidney cancer. Here we identify inactivating CTR9 mutations in 3 of 35 Wilms tumour families, through exome and Sanger sequencing. By contrast, no similar mutations are present in 1,000 population controls (P<0.0001). Each mutation segregates with Wilms tumour in the family and a second mutational event is present in available tumours. CTR9 is a key component of the polymerase-associated factor 1 complex which has multiple roles in RNA polymerase II regulation and is implicated in embryonic organogenesis and maintenance of embryonic stem cell pluripotency. These data establish CTR9 as a Wilms tumour predisposition gene and suggest it acts as a tumour suppressor gene.


Human Molecular Genetics | 2012

Gene-gene interactions in breast cancer susceptibility

Clare Turnbull; Sheila Seal; Anthony Renwick; Margaret Warren-Perry; Deborah Hughes; Anna Elliott; David Pernet; Susan Peock; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous; Mark T. Rogers; Susan Shanley

There have been few definitive examples of gene-gene interactions in humans. Through mutational analyses in 7325 individuals, we report four interactions (defined as departures from a multiplicative model) between mutations in the breast cancer susceptibility genes ATM and CHEK2 with BRCA1 and BRCA2 (case-only interaction between ATM and BRCA1/BRCA2 combined, P = 5.9 × 10(-4); ATM and BRCA1, P= 0.01; ATM and BRCA2, P= 0.02; CHEK2 and BRCA1/BRCA2 combined, P = 2.1 × 10(-4); CHEK2 and BRCA1, P= 0.01; CHEK2 and BRCA2, P= 0.01). The interactions are such that the resultant risk of breast cancer is lower than the multiplicative product of the constituent risks, and plausibly reflect the functional relationships of the encoded proteins in DNA repair. These findings have important implications for models of disease predisposition and clinical translation.


Human Molecular Genetics | 2015

Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25

Kevin Litchfield; Razvan Sultana; Anthony Renwick; Darshna Dudakia; Sheila Seal; Emma Ramsay; Silvana Powell; Anna Elliott; Margaret Warren-Perry; Rosalind Eeles; Julian Peto; Zsofia Kote-Jarai; Kenneth Muir; Jérémie Nsengimana; Uktcc; Michael R. Stratton; Douglas F. Easton; D. Timothy Bishop; Robert Huddart; Nazneen Rahman; Clare Turnbull

Recent genome-wide association studies (GWAS) and subsequent meta-analyses have identified over 25 SNPs at 18 loci, together accounting for >15% of the genetic susceptibility to testicular germ cell tumour (TGCT). To identify further common SNPs associated with TGCT, here we report a three-stage experiment, involving 4098 cases and 18 972 controls. Stage 1 comprised previously published GWAS analysis of 307 291 SNPs in 986 cases and 4946 controls. In Stage 2, we used previously published customised Illumina iSelect genotyping array (iCOGs) data across 694 SNPs in 1064 cases and 10 082 controls. Here, we report new genotyping of eight SNPs showing some evidence of association in combined analysis of Stage 1 and Stage 2 in an additional 2048 cases of TGCT and 3944 controls (Stage 3). Through fixed-effects meta-analysis across three stages, we identified a novel locus at 3q25.31 (rs1510272) demonstrating association with TGCT [per-allele odds ratio (OR) = 1.16, 95% confidence interval (CI) = 1.06-1.27; P = 1.2 × 10(-9)].


Human Molecular Genetics | 2015

Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth

Chey Loveday; Katrina Tatton-Brown; Matthew Clarke; Isaac M. Westwood; Anthony Renwick; Emma Ramsay; Andrea H. Németh; Jennifer Campbell; Shelagh Joss; McKinlay Gardner; Anna Zachariou; Anna Elliott; Elise Ruark; Rob L. M. van Montfort; Nazneen Rahman

Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B’, beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B’, gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B’, delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10−10). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10−5). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.


Nature Genetics | 2017

Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation

Shawn Yost; Bas de Wolf; Sandra Hanks; Anna Zachariou; Chiara Marcozzi; Matthew Clarke; Richarda M. de Voer; Banafsheh Etemad; Esther Uijttewaal; Emma Ramsay; Harriet Wylie; Anna Elliott; Susan Picton; Audrey Smith; Sarah F. Smithson; Sheila Seal; Elise Ruark; Gunnar Houge; Jonathon Pines; Geert J. P. L. Kops; Nazneen Rahman

Through exome sequencing, we identified six individuals with biallelic loss-of-function mutations in TRIP13. All six developed Wilms tumor. Constitutional mosaic aneuploidies, microcephaly, developmental delay and seizures, which are features of mosaic variegated aneuploidy (MVA) syndrome, were more variably present. Through functional studies, we show that TRIP13-mutant patient cells have no detectable TRIP13 and have substantial impairment of the spindle assembly checkpoint (SAC), leading to a high rate of chromosome missegregation. Accurate segregation, as well as SAC proficiency, is rescued by restoring TRIP13 function. Individuals with biallelic TRIP13 or BUB1B mutations have a high risk of embryonal tumors, and here we show that their cells display severe SAC impairment. MVA due to biallelic CEP57 mutations, or of unknown cause, is not associated with embryonal tumors and cells from these individuals show minimal SAC deficiency. These data provide insights into the complex relationships between aneuploidy and carcinogenesis.


American Journal of Human Genetics | 2017

Mutations in Epigenetic Regulation Genes Are a Major Cause of Overgrowth with Intellectual Disability

Katrina Tatton-Brown; Chey Loveday; Shawn Yost; Matthew Clarke; Emma Ramsay; Anna Zachariou; Anna Elliott; Harriet Wylie; Anna Ardissone; Olaf Rittinger; Fiona Stewart; I. Karen Temple; Trevor Cole; Shazia Mahamdallie; Sheila Seal; Elise Ruark; Nazneen Rahman

To explore the genetic architecture of human overgrowth syndromes and human growth control, we performed experimental and bioinformatic analyses of 710 individuals with overgrowth (height and/or head circumference ≥+2 SD) and intellectual disability (OGID). We identified a causal mutation in 1 of 14 genes in 50% (353/710). This includes HIST1H1E, encoding histone H1.4, which has not been associated with a developmental disorder previously. The pathogenic HIST1H1E mutations are predicted to result in a product that is less effective in neutralizing negatively charged linker DNA because it has a reduced net charge, and in DNA binding and protein-protein interactions because key residues are truncated. Functional network analyses demonstrated that epigenetic regulation is a prominent biological process dysregulated in individuals with OGID. Mutations in six epigenetic regulation genes—NSD1, EZH2, DNMT3A, CHD8, HIST1H1E, and EED—accounted for 44% of individuals (311/710). There was significant overlap between the 14 genes involved in OGID and 611 genes in regions identified in GWASs to be associated with height (p = 6.84 × 10−8), suggesting that a common variation impacting function of genes involved in OGID influences height at a population level. Increased cellular growth is a hallmark of cancer and there was striking overlap between the genes involved in OGID and 260 somatically mutated cancer driver genes (p = 1.75 × 10−14). However, the mutation spectra of genes involved in OGID and cancer differ, suggesting complex genotype-phenotype relationships. These data reveal insights into the genetic control of human growth and demonstrate that exome sequencing in OGID has a high diagnostic yield.


Nature Genetics | 2015

Mutations in the transcriptional repressor REST predispose to Wilms tumor

Shazia Mahamdallie; Sandra Hanks; Kristen L. Karlin; Anna Zachariou; Elizabeth R Perdeaux; Elise Ruark; Chad A. Shaw; Alexander Renwick; Emma Ramsay; Shawn Yost; Anna Elliott; Jillian M Birch; Michael Capra; Juliet Gray; Juliet Hale; Judith E. Kingston; Gill Levitt; Thomas W. McLean; Eamonn Sheridan; Anthony Renwick; Sheila Seal; Charles Stiller; Nj Sebire; Thomas F. Westbrook; Nazneen Rahman

Wilms tumor is the most common childhood renal cancer. To identify mutations that predispose to Wilms tumor, we are conducting exome sequencing studies. Here we describe 11 different inactivating mutations in the REST gene (encoding RE1-silencing transcription factor) in four familial Wilms tumor pedigrees and nine non-familial cases. Notably, no similar mutations were identified in the ICR1000 control series (13/558 versus 0/993; P < 0.0001) or in the ExAC series (13/558 versus 0/61,312; P < 0.0001). We identified a second mutational event in two tumors, suggesting that REST may act as a tumor-suppressor gene in Wilms tumor pathogenesis. REST is a zinc-finger transcription factor that functions in cellular differentiation and embryonic development. Notably, ten of 11 mutations clustered within the portion of REST encoding the DNA-binding domain, and functional analyses showed that these mutations compromise REST transcriptional repression. These data establish REST as a Wilms tumor predisposition gene accounting for ∼2% of Wilms tumor.

Collaboration


Dive into the Anna Elliott's collaboration.

Top Co-Authors

Avatar

Nazneen Rahman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sheila Seal

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anthony Renwick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Elise Ruark

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Emma Ramsay

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sandra Hanks

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Shazia Mahamdallie

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anna Zachariou

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Matthew Clarke

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Shawn Yost

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge