Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nazneen Rahman is active.

Publication


Featured researches published by Nazneen Rahman.


Nature Genetics | 2002

Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations

Hanne Meijers-Heijboer; Ans van den Ouweland; J.G.M. Klijn; Marijke Wasielewski; Anja de Snoo; Rogier A. Oldenburg; Antoinette Hollestelle; Mark M. J. Houben; Ellen Crepin; Monique van Veghel-Plandsoen; Fons Elstrodt; Cornelia van Duijn; C.C.M. Bartels; Carel Meijers; Mieke Schutte; Lesley McGuffog; Deborah Thompson; Douglas F. Easton; Nayanta Sodha; Sheila Seal; Rita Barfoot; Jon Mangion; Jenny Chang-Claude; Diana Eccles; Rosalind Eeles; D. Gareth Evans; Richard S. Houlston; Victoria Murday; Steven A. Narod; Tamara Peretz

Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer1, but account for only a small fraction of breast cancer susceptibility1,2. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity6, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.


Nature Genetics | 2007

PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene

Nazneen Rahman; Sheila Seal; Deborah Thompson; Patrick Kelly; Anthony Renwick; Anna Elliott; Sarah Reid; Katarina Spanova; Rita Barfoot; Tasnim Chagtai; Hiran Jayatilake; Lesley McGuffog; Sandra Hanks; D. Gareth Evans; Diana Eccles; Douglas F. Easton; Michael R. Stratton

PALB2 interacts with BRCA2, and biallelic mutations in PALB2 (also known as FANCN), similar to biallelic BRCA2 mutations, cause Fanconi anemia. We identified monoallelic truncating PALB2 mutations in 10/923 individuals with familial breast cancer compared with 0/1,084 controls (P = 0.0004) and show that such mutations confer a 2.3-fold higher risk of breast cancer (95% confidence interval (c.i.) = 1.4–3.9, P = 0.0025). The results show that PALB2 is a breast cancer susceptibility gene and further demonstrate the close relationship of the Fanconi anemia–DNA repair pathway and breast cancer predisposition.


Nature Genetics | 2006

Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles

Sheila Seal; Deborah Thompson; Anthony Renwick; Anna Elliott; Patrick Kelly; Rita Barfoot; Tasnim Chagtai; Hiran Jayatilake; Munaza Ahmed; Katarina Spanova; Bernard North; Lesley McGuffog; D. Gareth Evans; Diana Eccles; Douglas F. Easton; Michael R. Stratton; Nazneen Rahman

We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation–negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2–3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers.


Nature Genetics | 2010

Genome-wide association study identifies five new breast cancer susceptibility loci

Clare Turnbull; Shahana Ahmed; Jonathan Morrison; David Pernet; Anthony Renwick; Mel Maranian; Sheila Seal; Maya Ghoussaini; Sarah Hines; Catherine S. Healey; Deborah Hughes; Margaret Warren-Perry; William Tapper; Diana Eccles; D. Gareth Evans; Maartje J. Hooning; Mieke Schutte; Ans van den Ouweland; Richard S. Houlston; Gillian Ross; Cordelia Langford; Paul Pharoah; Mike Stratton; Alison M. Dunning; Nazneen Rahman; Douglas F. Easton

Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 × 10−7 to P = 3.2 × 10−15). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 × 10−6), 8q24 (rs1562430, P = 5.8 × 10−7) and LSP1 (rs909116, P = 7.3 × 10−7) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.


Nature Genetics | 2006

ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles

Anthony Renwick; Deborah Thompson; Sheila Seal; Patrick Kelly; Tasnim Chagtai; Munaza Ahmed; Bernard North; Hiran Jayatilake; Rita Barfoot; Katarina Spanova; Lesley McGuffog; D. Gareth Evans; Diana Eccles; Douglas F. Easton; Michael R. Stratton; Nazneen Rahman

We screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and two in controls (P = 0.0047). The results demonstrate that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% confidence interval (c.i.) = 1.51–3.78, P = 0.0003). There was no evidence that other classes of ATM variant confer a risk of breast cancer.


Nature Genetics | 2007

A common coding variant in CASP8 is associated with breast cancer risk

Angela Cox; Alison M. Dunning; Montserrat Garcia-Closas; Sabapathy P. Balasubramanian; Malcolm Reed; Karen A. Pooley; Serena Scollen; Caroline Baynes; Bruce A.J. Ponder; Stephen J. Chanock; Jolanta Lissowska; Louise A. Brinton; Beata Peplonska; Melissa C. Southey; John L. Hopper; Margaret McCredie; Graham G. Giles; Olivia Fletcher; Nichola Johnson; Isabel dos Santos Silva; Lorna Gibson; Stig E. Bojesen; Børge G. Nordestgaard; Christen K. Axelsson; Diana Torres; Ute Hamann; Christina Justenhoven; Hiltrud Brauch; Jenny Chang-Claude; Silke Kropp

The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 −202 C → A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3′ UTR A → G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9–15 studies, comprising 11,391–18,290 cases and 14,753–22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85–0.94) and 0.74 (95% c.i.: 0.62–0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; Ptrend = 1.1 × 10−7) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02–1.13) and 1.16 (95% c.i.: 1.08–1.25), respectively; Ptrend = 2.8 × 10−5). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.NOTE: In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I in Table 1 (ICAM5 V301I); genotype counts in Supplementary Table 2 (ICAM5; ICR_FBCS and Kuopio studies) and minor allele frequencies, trend test and odds ratios for heterozygotes and rare homozygotes in Supplementary Table 3 (ICAM5; ICR_FBCS and Kuopio studies). The errors in Table 1 have been corrected in the PDF version of the article. The errors in supplementary information have been corrected online.


Nature Genetics | 2007

Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer

Sarah Reid; Detlev Schindler; Helmut Hanenberg; Karen Barker; Sandra Hanks; Reinhard Kalb; Kornelia Neveling; Patrick Kelly; Sheila Seal; Marcel Freund; Melanie Wurm; Sat Dev Batish; Francis P. Lach; Sevgi Yetgin; Heidemarie Neitzel; Hany Ariffin; Marc Tischkowitz; Christopher G. Mathew; Arleen D. Auerbach; Nazneen Rahman

PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.


Nature Genetics | 2004

Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B

Sandra Hanks; Kim Coleman; Sarah Reid; Alberto Plaja; Helen V. Firth; David Fitzpatrick; Alexa Kidd; Károly Méhes; Richard Nash; Nathanial Robin; Nora Shannon; John Tolmie; John Swansbury; Alexandre Irrthum; Jenny Douglas; Nazneen Rahman

Mosaic variegated aneuploidy is a rare recessive condition characterized by growth retardation, microcephaly, childhood cancer and constitutional mosaicism for chromosomal gains and losses. In five families with mosaic variegated aneuploidy, including two with embryonal rhabdomyosarcoma, we identified truncating and missense mutations of BUB1B, which encodes BUBR1, a key protein in the mitotic spindle checkpoint. These data are the first to relate germline mutations in a spindle checkpoint gene with a human disorder and strongly support a causal link between aneuploidy and cancer development.


Nature Genetics | 2008

The emerging landscape of breast cancer susceptibility.

Michael R. Stratton; Nazneen Rahman

The genetic basis of inherited predisposition to breast cancer has been assiduously investigated for the past two decades and has been the subject of several recent discoveries. Three reasonably well-defined classes of breast cancer susceptibility alleles with different levels of risk and prevalence in the population have become apparent: rare high-penetrance alleles, rare moderate-penetrance alleles and common low-penetrance alleles. The contribution of each component to breast cancer predisposition is still to be fully explored, as are the phenotypic characteristics of the cancers associated with them, the ways in which they interact, much of their biology and their clinical utility. These recent advances herald a new chapter in the exploration of susceptibility to breast cancer and are likely to provide insights relevant to other common, heterogeneous diseases.


The New England Journal of Medicine | 2014

Breast-Cancer Risk in Families with Mutations in PALB2

Antonis C. Antoniou; Silvia Casadei; Tuomas Heikkinen; Daniel Barrowdale; Katri Pylkäs; Jonathan C. Roberts; Andrew Lee; Deepak Subramanian; Kim De Leeneer; Florentia Fostira; Eva Tomiak; Susan L. Neuhausen; Zhi L Teo; Sofia Khan; Kristiina Aittomäki; Jukka S. Moilanen; Clare Turnbull; Sheila Seal; Arto Mannermaa; Anne Kallioniemi; Geoffrey J. Lindeman; Saundra S. Buys; Irene L. Andrulis; Paolo Radice; Carlo Tondini; Siranoush Manoukian; Amanda Ewart Toland; Penelope Miron; Jeffrey N. Weitzel; Susan M. Domchek

BACKGROUND Germline loss-of-function mutations in PALB2 are known to confer a predisposition to breast cancer. However, the lifetime risk of breast cancer that is conferred by such mutations remains unknown. METHODS We analyzed the risk of breast cancer among 362 members of 154 families who had deleterious truncating, splice, or deletion mutations in PALB2. The age-specific breast-cancer risk for mutation carriers was estimated with the use of a modified segregation-analysis approach that allowed for the effects of PALB2 genotype and residual familial aggregation. RESULTS The risk of breast cancer for female PALB2 mutation carriers, as compared with the general population, was eight to nine times as high among those younger than 40 years of age, six to eight times as high among those 40 to 60 years of age, and five times as high among those older than 60 years of age. The estimated cumulative risk of breast cancer among female mutation carriers was 14% (95% confidence interval [CI], 9 to 20) by 50 years of age and 35% (95% CI, 26 to 46) by 70 years of age. Breast-cancer risk was also significantly influenced by birth cohort (P<0.001) and by other familial factors (P=0.04). The absolute breast-cancer risk for PALB2 female mutation carriers by 70 years of age ranged from 33% (95% CI, 25 to 44) for those with no family history of breast cancer to 58% (95% CI, 50 to 66) for those with two or more first-degree relatives with breast cancer at 50 years of age. CONCLUSIONS Loss-of-function mutations in PALB2 are an important cause of hereditary breast cancer, with respect both to the frequency of cancer-predisposing mutations and to the risk associated with them. Our data suggest the breast-cancer risk for PALB2 mutation carriers may overlap with that for BRCA2 mutation carriers. (Funded by the European Research Council and others.).

Collaboration


Dive into the Nazneen Rahman's collaboration.

Top Co-Authors

Avatar

Sheila Seal

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sandra Hanks

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Anthony Renwick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elise Ruark

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Clare Turnbull

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Jenny Douglas

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Rita Barfoot

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Emma Ramsay

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge