Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna F. Farago is active.

Publication


Featured researches published by Anna F. Farago.


Nature Neuroscience | 2008

Redefining the serotonergic system by genetic lineage.

Anna F. Farago; Rajeshwar Awatramani; Michael M. Scott; Evan S. Deneris; Susan M. Dymecki

Central serotonin-producing neurons are heterogeneous—differing in location, morphology, neurotoxin sensitivity and associated clinical disorders—but the underpinnings of this heterogeneity are largely unknown, as are the markers that distinguish physiological subtypes of serotonergic neurons. Here we redefined serotonergic subtypes on the basis of genetic programs that are differentially enacted in progenitor cells. We uncovered a molecular framework for the serotonergic system that, having genetic lineages as its basis, is likely to have physiological relevance and will permit access to genetically defined subtypes for manipulation.


Neuron | 2006

Assembly of the Brainstem Cochlear Nuclear Complex Is Revealed by Intersectional and Subtractive Genetic Fate Maps

Anna F. Farago; Rajeshwar Awatramani; Susan M. Dymecki

The cochlear nuclear complex (CN) is the entry point for central auditory processing. Although constituent neurons have been studied physiologically, their embryological origins and molecular profiles remain obscure. Applying intersectional and subtractive genetic fate mapping approaches, we show that this complex develops modularly from genetically separable progenitor populations arrayed as rostrocaudal microdomains within and outside the hindbrain (lower) rhombic lip (LRL). The dorsal CN subdivision, structurally and topographically similar to the cerebellum, arises from microdomains unexpectedly caudal and noncontiguous to cerebellar primordium; ventral CN subdivisions arise from more rostral LRL. Magnocellular regions receive contributions from LRL and coaxial non-lip progenitors; contrastingly, ensheathing granule cells derive principally from LRL. Also LRL-derived and molecularly similar to CN granule cells are precerebellar mossy fiber neurons; surprisingly, these ostensibly intertwined populations have separable origins and adjacent but segregated migratory streams. Together, these findings provide new platforms for investigating the development and evolution of auditory and cerebellar systems.


Clinical Cancer Research | 2016

EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non–Small Cell Lung Cancer: A Retrospective Analysis

Justin F. Gainor; Alice T. Shaw; Lecia V. Sequist; Fu X; Christopher G. Azzoli; Zofia Piotrowska; Tiffany Huynh; Zhao L; L. Fulton; Katherine Schultz; Emily Howe; Anna F. Farago; Ryan J. Sullivan; Stone; Subba R. Digumarthy; Teresa Moran; Aaron N. Hata; Yukako Yagi; Beow Y. Yeap; J. A. Engelman; Mari Mino-Kenudson

Purpose: PD-1 inhibitors are established agents in the management of non–small cell lung cancer (NSCLC); however, only a subset of patients derives clinical benefit. To determine the activity of PD-1/PD-L1 inhibitors within clinically relevant molecular subgroups, we retrospectively evaluated response patterns among EGFR-mutant, anaplastic lymphoma kinase (ALK)-positive, and EGFR wild-type/ALK-negative patients. Experimental Design: We identified 58 patients treated with PD-1/PD-L1 inhibitors. Objective response rates (ORR) were assessed using RECIST v1.1. PD-L1 expression and CD8+ tumor-infiltrating lymphocytes (TIL) were evaluated by IHC. Results: Objective responses were observed in 1 of 28 (3.6%) EGFR-mutant or ALK-positive patients versus 7 of 30 (23.3%) EGFR wild-type and ALK-negative/unknown patients (P = 0.053). The ORR among never- or light- (≤10 pack years) smokers was 4.2% versus 20.6% among heavy smokers (P = 0.123). In an independent cohort of advanced EGFR-mutant (N = 68) and ALK-positive (N = 27) patients, PD-L1 expression was observed in 24%/16%/11% and 63%/47%/26% of pre–tyrosine kinase inhibitor (TKI) biopsies using cutoffs of ≥1%, ≥5%, and ≥50% tumor cell staining, respectively. Among EGFR-mutant patients with paired, pre- and post-TKI–resistant biopsies (N = 57), PD-L1 expression levels changed after resistance in 16 (28%) patients. Concurrent PD-L1 expression (≥5%) and high levels of CD8+ TILs (grade ≥2) were observed in only 1 pretreatment (2.1%) and 5 resistant (11.6%) EGFR-mutant specimens and was not observed in any ALK-positive, pre- or post-TKI specimens. Conclusions: NSCLCs harboring EGFR mutations or ALK rearrangements are associated with low ORRs to PD-1/PD-L1 inhibitors. Low rates of concurrent PD-L1 expression and CD8+ TILs within the tumor microenvironment may underlie these clinical observations. Clin Cancer Res; 22(18); 4585–93. ©2016 AACR. See related commentary by Gettinger and Politi, p. 4539


Neuron | 2005

Hindbrain Rhombic Lip Is Comprised of Discrete Progenitor Cell Populations Allocated by Pax6

Rebecca L. Landsberg; Rajeshwar Awatramani; Nina L. Hunter; Anna F. Farago; Heather J. DiPietrantonio; Carolyn I. Rodriguez; Susan M. Dymecki

The lower rhombic lip (LRL) is a germinal zone in the dorsal hindbrain productive of tangentially migrating neurons, streaming extramurally (mossy fiber neurons) or intramurally (climbing fiber neurons). Here we show that LRL territory, operationally defined by Wnt1 expression, is parceled into molecular subdomains predictive of cell fate. Progressing dorsoventrally, Lmx1a and Gdf7 expression identifies the primordium for hindbrain choroid plexus epithelial cells; Math1, for mossy fiber neurons; and immediately ventral to Math1 yet within Wnt1(+) territory, a climbing fiber primordium dominated by Ngn1-expressing cells. Elimination of Pax6 results in expansion of this Ngn1(+) progenitor pool and reduction in the Math1(+) pool, with accompanying later enlargement of the climbing fiber nucleus and reductions in mossy fiber nuclei. Pax6 loss also disrupts Msx expression cell-nonautonomously, suggesting Pax6 may influence LRL progenitor identity indirectly through potentiating BMP signaling. These studies suggest that underlying the diversity and proportions of fates produced by the LRL is a precise suborganization regulated by Pax6.


Cell | 2014

Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing

David G. McFadden; Thales Papagiannakopoulos; Amaro Taylor-Weiner; Chip Stewart; Scott L. Carter; Kristian Cibulskis; Arjun Bhutkar; Aaron McKenna; Alison L. Dooley; Amanda Vernon; Carrie Sougnez; Scott Malstrom; Megan Heimann; Jennifer Park; Frances K. Chen; Anna F. Farago; Talya L. Dayton; Erica Shefler; Stacey Gabriel; Gad Getz; Tyler Jacks

Small cell lung carcinoma (SCLC) is a highly lethal, smoking-associated cancer with few known targetable genetic alterations. Using genome sequencing, we characterized the somatic evolution of a genetically engineered mouse model (GEMM) of SCLC initiated by loss of Trp53 and Rb1. We identified alterations in DNA copy number and complex genomic rearrangements and demonstrated a low somatic point mutation frequency in the absence of tobacco mutagens. Alterations targeting the tumor suppressor Pten occurred in the majority of murine SCLC studied, and engineered Pten deletion accelerated murine SCLC and abrogated loss of Chr19 in Trp53; Rb1; Pten compound mutant tumors. Finally, we found evidence for polyclonal and sequential metastatic spread of murine SCLC by comparative sequencing of families of related primary tumors and metastases. We propose a temporal model of SCLC tumorigenesis with implications for human SCLC therapeutics and the nature of cancer-genome evolution in GEMMs.


Cancer Discovery | 2017

Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1)

Alexander Drilon; Salvatore Siena; Sai-Hong Ignatius Ou; Manish R. Patel; Myung Ju Ahn; Jeeyun Lee; Todd Michael Bauer; Anna F. Farago; Jennifer J. Wheler; Stephen V. Liu; Robert C. Doebele; Laura Giannetta; Giulio Cerea; Giovanna Marrapese; Michele Schirru; Alessio Amatu; Katia Bencardino; Laura Palmeri; Andrea Sartore-Bianchi; Angelo Vanzulli; Sara Cresta; Silvia Damian; Matteo Duca; Elena Ardini; Gang Li; Jason H. Christiansen; Karey Kowalski; Ann D. Johnson; Rupal Patel; David Luo

Entrectinib, a potent oral inhibitor of the tyrosine kinases TRKA/B/C, ROS1, and ALK, was evaluated in two phase I studies in patients with advanced or metastatic solid tumors, including patients with active central nervous system (CNS) disease. Here, we summarize the overall safety and report the antitumor activity of entrectinib in a cohort of patients with tumors harboring NTRK1/2/3, ROS1, or ALK gene fusions, naïve to prior TKI treatment targeting the specific gene, and who were treated at doses that achieved therapeutic exposures consistent with the recommended phase II dose. Entrectinib was well tolerated, with predominantly Grades 1/2 adverse events that were reversible with dose modification. Responses were observed in non-small cell lung cancer, colorectal cancer, mammary analogue secretory carcinoma, melanoma, and renal cell carcinoma, as early as 4 weeks after starting treatment and lasting as long as >2 years. Notably, a complete CNS response was achieved in a patient with SQSTM1-NTRK1-rearranged lung cancer.Significance: Gene fusions of NTRK1/2/3, ROS1, and ALK (encoding TRKA/B/C, ROS1, and ALK, respectively) lead to constitutive activation of oncogenic pathways. Entrectinib was shown to be well tolerated and active against those gene fusions in solid tumors, including in patients with primary or secondary CNS disease. Cancer Discov; 7(4); 400-9. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 339.


Annals of Oncology | 2016

What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC)

Alexander Drilon; S. Dogan; M. Gounder; R. Shen; Maria E. Arcila; Lu Wang; David M. Hyman; Jaclyn F. Hechtman; G. Wei; N. R. Cam; Jason H. Christiansen; David Luo; Edna Chow Maneval; Todd Michael Bauer; Manish R. Patel; Stephen V. Liu; S-H.I. Ou; Anna F. Farago; Alice T. Shaw; R. F. Shoemaker; Jonathan Lim; Zachary Hornby; Pratik S. Multani; Marc Ladanyi; Michael F. Berger; N. Katabi; R. Ghossein; A. L. Ho

Here, we describe the dramatic response of a patient with an ETV6-NTRK3-driven mammary analogue secretory carcinoma to treatment with a pan-Trk inhibitor, and the development of acquired resistance linked to a novel NTRK3 mutation that interferes with drug binding. This case emphasizes how molecular profiling can identify therapies for rare diseases and dissect mechanisms of drug resistance.


Journal of Thoracic Oncology | 2015

Durable Clinical Response to Entrectinib in NTRK1-Rearranged Non-Small Cell Lung Cancer

Anna F. Farago; Long P. Le; Zongli Zheng; Alona Muzikansky; Alexander Drilon; Manish R. Patel; Todd Michael Bauer; Stephen V. Liu; Sai-Hong Ignatius Ou; David M. Jackman; Daniel B. Costa; Pratik S. Multani; Zachary Hornby; Edna Chow-Maneval; David Luo; Jonathan Lim; Anthony John Iafrate; Alice T. Shaw

Introduction: Chromosomal rearrangements involving neurotrophic tyrosine kinase 1 (NTRK1) occur in a subset of non-small cell lung cancers (NSCLCs) and other solid tumor malignancies, leading to expression of an oncogenic TrkA fusion protein. Entrectinib (RXDX-101) is an orally available tyrosine kinase inhibitor, including TrkA. We sought to determine the frequency of NTRK1 rearrangements in NSCLC and to assess the clinical activity of entrectinib. Methods: We screened 1378 cases of NSCLC using anchored multiplex polymerase chain reaction (AMP). A patient with an NTRK1 gene rearrangement was enrolled onto a Phase 1 dose escalation study of entrectinib in adult patients with locally advanced or metastatic tumors (NCT02097810). We assessed safety and response to treatment. Results: We identified NTRK1 gene rearrangements at a frequency of 0.1% in this cohort. A patient with stage IV lung adenocrcinoma with an SQSTM1-NTRK1 fusion transcript expression was treated with entrectinib. Entrectinib was well tolerated, with no grade 3–4 adverse events. Within three weeks of starting on treatment, the patient reported resolution of prior dyspnea and pain. Restaging CT scans demonstrated a RECIST partial response (PR) and complete resolution of all brain metastases. This patient has continued on treatment for over 6 months with an ongoing PR. Conclusions: Entrectinib demonstrated significant anti-tumor activity in a patient with NSCLC harboring an SQSTM1-NTRK1 gene rearrangement, indicating that entrectinib may be an effective therapy for tumors with NTRK gene rearrangements, including those with central nervous system metastases.


The New England Journal of Medicine | 2018

Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children

Alexander Drilon; Theodore W. Laetsch; Shivaani Kummar; Steven G. DuBois; Ulrik N. Lassen; George D. Demetri; Michael J. Nathenson; Robert C. Doebele; Anna F. Farago; Alberto S. Pappo; Brian Turpin; Afshin Dowlati; Marcia S. Brose; Leo Mascarenhas; Noah Federman; Jordan Berlin; Wafik S. El-Deiry; Christina Baik; John F. Deeken; Valentina Boni; Ramamoorthy Nagasubramanian; Matthew H. Taylor; Erin R. Rudzinski; Funda Meric-Bernstam; Davendra P.S. Sohal; Patrick C. Ma; Luis E. Raez; Jaclyn F. Hechtman; Ryma Benayed; Marc Ladanyi

Background Fusions involving one of three tropomyosin receptor kinases (TRK) occur in diverse cancers in children and adults. We evaluated the efficacy and safety of larotrectinib, a highly selective TRK inhibitor, in adults and children who had tumors with these fusions. Methods We enrolled patients with consecutively and prospectively identified TRK fusion–positive cancers, detected by molecular profiling as routinely performed at each site, into one of three protocols: a phase 1 study involving adults, a phase 1–2 study involving children, or a phase 2 study involving adolescents and adults. The primary end point for the combined analysis was the overall response rate according to independent review. Secondary end points included duration of response, progression‐free survival, and safety. Results A total of 55 patients, ranging in age from 4 months to 76 years, were enrolled and treated. Patients had 17 unique TRK fusion–positive tumor types. The overall response rate was 75% (95% confidence interval [CI], 61 to 85) according to independent review and 80% (95% CI, 67 to 90) according to investigator assessment. At 1 year, 71% of the responses were ongoing and 55% of the patients remained progression‐free. The median duration of response and progression‐free survival had not been reached. At a median follow‐up of 9.4 months, 86% of the patients with a response (38 of 44 patients) were continuing treatment or had undergone surgery that was intended to be curative. Adverse events were predominantly of grade 1, and no adverse event of grade 3 or 4 that was considered by the investigators to be related to larotrectinib occurred in more than 5% of patients. No patient discontinued larotrectinib owing to drug‐related adverse events. Conclusions Larotrectinib had marked and durable antitumor activity in patients with TRK fusion–positive cancer, regardless of the age of the patient or of the tumor type. (Funded by Loxo Oncology and others; ClinicalTrials.gov numbers, NCT02122913, NCT02637687, and NCT02576431.)


Proceedings of the National Academy of Sciences of the United States of America | 2015

Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer

Anthony C. Faber; Anna F. Farago; Carlotta Costa; Anahita Dastur; Maria Gomez-Caraballo; Rebecca Robbins; Bethany L. Wagner; William Rideout; Charles T. Jakubik; Jungoh Ham; Elena J. Edelman; Hiromichi Ebi; Alan T. Yeo; Aaron N. Hata; Youngchul Song; Neha U. Patel; Ryan J. March; Ah Ting Tam; Randy J. Milano; Jessica L. Boisvert; Mark A. Hicks; Sarah Elmiligy; Scott Malstrom; Miguel Rivera; Hisashi Harada; Brad Windle; Sridhar Ramaswamy; Cyril H. Benes; Tyler Jacks; Jeffrey A. Engelman

Significance Small-cell lung cancer (SCLC) is an aggressive carcinoma with few effective treatment options beyond first-line chemotherapy. BH3 mimetics, such as ABT-263, promote apoptosis in SCLC cell lines, but early phase clinical trials demonstrated no significant clinical benefit. Here, we examine the sensitivity of a large panel of cancer cell lines, including SCLC, to ABT-263 and find that high Bcl2-interacting mediator of cell death (BIM) and low myeloid cell leukemia 1 (MCL-1) expression together predict sensitivity. SCLC cells relatively resistant to ABT-263 are sensitized by TORC1/2 inhibition via MCL-1 reduction. Combination of ABT-263 and TORC1/2 inhibition stabilizes or shrinks tumors in xenograft models, in autochthonous SCLC tumors in a genetically engineered mouse model, and in a patient-derived xenograft SCLC model. Collectively, these data support a compelling new therapeutic strategy for treating SCLC. BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.

Collaboration


Dive into the Anna F. Farago's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Doebele

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Alexander Drilon

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Todd Michael Bauer

Sarah Cannon Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Hong

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge