Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Joll is active.

Publication


Featured researches published by Cynthia Joll.


Toxicology | 2011

Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines

Richard J. Bull; David A. Reckhow; Xing-Fang Li; Andrew R. Humpage; Cynthia Joll; Steve E. Hrudey

Drinking water disinfectants react with natural organic material (NOM) present in source waters used for drinking water to produce a wide variety of by-products. Several hundred disinfections by-products (DBPs) have been identified, but none have been identified with sufficient carcinogenic potency to account for the cancer risks projected from epidemiological studies. In a search for DBPs that might fill this risk gap, the present study projected reactions of chlorine and chloramine that could occur with substructures present in NOM to produce novel by-products. A review of toxicological data on related compounds, supplemented by use of a quantitative structure toxicity relationship (QSTR) program TOPKAT®) identified chemicals with a high probability of being chronically toxic and/or carcinogenic among 489 established and novel DBPs. Classes of DBPs that were specifically examined were haloquinones (HQs), related halo-cyclopentene and cyclohexene (HCP&H) derivatives, halonitriles (HNs), organic N-chloramines (NCls), haloacetamides (HAMs), and nitrosamines (NAs). A review of toxicological data available for quinones suggested that HQs and HCP&H derivatives appeared likely to be of health concern and were predicted to have chronic lowest observed adverse effect levels (LOAELs) in the low μg/kg day range. Several HQs were predicted to be carcinogenic. Some have now been identified in drinking water. The broader class of HNs was explored by considering current toxicological data on haloacetonitriles and extending this to halopropionitriles. 2,2-dichloropropionitrile has been identified in drinking water at low concentrations, as well as the more widely recognized haloacetonitriles. The occurrence of HAMs has been previously documented. The very limited toxicological data on HAMs suggests that this class would have toxicological potencies similar to the dihaloacetic acids. Organic N-halamines are also known to be produced in drinking water treatment and have biological properties of concern, but no member has ever been characterized toxicologically beyond bacterial or in vitro studies of genotoxicity. The documented formation of several nitrosamines from secondary amines from both natural and industrial sources prompted exploration of the formation of additional nitrosamines. N-diphenylnitrosamine was identified in drinking waters. Of more interest, however, was the formation of phenazine (and subsequently N-chorophenazine) in a competing reaction. These are the first heterocyclic amines that have been identified as chlorination by-products. Consideration of the amounts detected of members of these by-product classes and their probable toxicological potency suggest a prioritization for obtaining more detailed toxicological data of HQs>HCP&H derivatives>NCls>HNs. Based upon a ubiquitous occurrence and virtual lack of in vivo toxicological data, NCls are the most difficult group to assign a priority as potential carcinogenic risks. This analysis indicates that research on the general problem of DBPs requires a more systematic approach than has been pursued in the past. Utilization of predictive chemical tools to guide further research can help bring resolution to the DBP issue by identifying likely DBPs with high toxicological potency.


Water Research | 2009

The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates

Ina Kristiana; Hervé Gallard; Cynthia Joll; Jean-Philippe Croué

The formation of disinfection by-products (DBPs) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total organic chlorine (TOCl), bromine (TOBr), and iodine (TOI). The formation and distribution of halogen-specific TOX during chlorination and chloramination of natural organic matter (NOM) isolates in the presence of bromide and iodide ions were studied. As expected, chloramination produced significantly less TOX than chlorination. TOCl was the dominant species formed in both chlorination and chloramination. TOI was always produced in chloramination, but not in chlorination when high chlorine dose was used, due to the limited presence of HOI in chlorination as a result of the oxidation of iodide to iodate in the presence of excess chlorine. The formation of TOI during chloramination increased as the initial iodide ion concentration increased, with a maximum of approximately 60% of the initial iodide ion becoming incorporated into NOM. Iodine incorporation in NOM was consistently higher than bromine incorporation, demonstrating that the competitive reactions between bromine and iodine species in chloramination favoured the formation of HOI and thus TOI, rather than TOBr. Correlations between the aromatic character of the NOM isolates (SUVA(254) and % aromatic C) and the concentrations of overall TOX and halogen-specific TOX in chloramination were observed. This indicates that the aromatic moieties in NOM, as indicated by SUVA(254) and % aromatic C, play an important role in the formation of overall TOX and halogen-specific TOX in chloramination. THMs comprised only a fraction of TOX, up to 7% in chloramination and up to 47% in chlorination. Although chloramine produces less TOX than chlorine, it formed proportionally more non-THM DBPs than chlorine. These non-THM DBPs are mostly unknown, corresponding to unknown health risks. Considering the higher potential for formation of iodinated DBPs and unknown DBPs associated with the use of chloramine, water utilities need to carefully balance the risks and benefits of using chloramine as an alternative disinfectant to chlorine in order to satisfy guideline values for THMs.


Chemosphere | 2011

Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant

Ina Kristiana; Cynthia Joll; Anna Heitz

The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.


Water Research | 2015

Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – Electrophilic aromatic substitution and oxidation

Justine Criquet; Eva M. Rodríguez; Sebastien Allard; Sven Wellauer; Elisabeth Salhi; Cynthia Joll; Urs von Gunten

Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS).


Environmental Science & Technology | 2012

Iodate and Iodo-Trihalomethane Formation during Chlorination of Iodide-Containing Waters: Role of Bromide

Justine Criquet; Sebastien Allard; Elisabeth Salhi; Cynthia Joll; Anna Heitz; Urs von Gunten

The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.


Journal of Chromatography A | 2012

Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry.

Sebastien Allard; Jeffrey Charrois; Cynthia Joll; Anna Heitz

Trihalomethanes are predominantly formed during disinfection of water via reactions of the oxidant with natural organic matter. Even though chlorinated and brominated trihalomethanes are the most widespread organic contaminants in drinking water, when iodide is present in raw water iodinated trihalomethanes can also be formed. The formation of iodinated trihalomethanes can lead to taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated or chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. The analysis of 10 trihalomethanes in water samples in a single run is challenging because the iodinated trihalomethanes are found at very low concentrations (ng/L range), while the regulated chlorinated and brominated trihalomethanes are present at much higher concentrations (above μg/L). An automated headspace solid-phase microextraction technique, with a programmed temperature vaporizer inlet coupled with gas chromatography-mass spectrometry, was developed for routine analysis of 10 trihalomethanes i.e. bromo-, chloro- and iodo-trihalomethanes in water samples. The carboxen/polydimethylsiloxane/divinylbenzene fiber was found to be the most suitable. The optimization, linearity range, accuracy and precision of the method are discussed. The limits of detection range from 1 ng/L to 20 ng/L for iodoform and chloroform, respectively. Matrix effects in treated groundwater, surfacewater, seawater, and secondary wastewater were investigated and it was shown that the method is suitable for the analysis of trace levels of iodinated trihalomethanes in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive. A survey conducted throughout various process stages in an advanced water recycling plant showed the presence of iodinated trihalomethanes at ng/L levels.


Water Research | 2013

Ozonation of iodide-containing waters: Selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs

Sebastien Allard; C.E. Nottle; A. Chan; Cynthia Joll; U. von Gunten

The presence of iodinated disinfection by-products (I-DBPs) in drinking water poses a potential health concern since it has been shown that I-DBPs are generally more genotoxic and cytotoxic than their chlorinated and brominated analogs. I-DBPs are formed during oxidation/disinfection of iodide-containing waters by reaction of the transient hypoiodous acid (HOI) with natural organic matter (NOM). In this study, we demonstrate that ozone pre-treatment selectively oxidizes iodide to iodate and avoids the formation of I-DBPs. Iodate is non-toxic and is therefore a desired sink of iodine in drinking water. Complete conversion of iodide to iodate while minimizing the bromate formation to below the guideline value of 10 μg L⁻¹ was achieved for a wide range of ozone doses in five raw waters with DOC and bromide concentrations of 1.1-20 mg L⁻¹ and 170-940 μg L⁻¹, respectively. Lowering the pH effectively further reduced bromate formation but had no impact on the extent of iodate and bromoform formation (the main trihalomethane (THM) formed during ozonation). Experiments carried out with pre-chlorinated/post-clarified samples already containing I-DBPs, showed that ozonation effectively oxidized I-THMs. Therefore, in iodide-containing waters, in which I-DBPs can be produced upon chlorination or especially chloramination, a pre-ozonation step to oxidize iodide to iodate is an efficient process to mitigate I-DBP formation.


Water Research | 2013

Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.

Ina Kristiana; Jace Tan; Cynthia Joll; Anna Heitz; Urs von Gunten; Jeffrey Charrois

N-Nitrosamines are a class of disinfection by-products (DBPs) that have been reported to be more toxic than the most commonly detected and regulated DBPs. Only a few studies investigating the formation of N-nitrosamines from disinfection of natural waters have been reported, and little is known about the role of natural organic matter (NOM) and the effects of its nature and reactivity on the formation of N-nitrosamines. This study investigated the influence of the molecular weight (MW) characteristics of NOM on the formation of eight species of N-nitrosamines from chlorination and chloramination, and is the first to report on the formation of eight N-nitrosamines from chlorination and chloramination of MW fractions of NOM. Isolated NOM from three different source waters in Western Australia was fractionated into several apparent MW (AMW) fractions using preparative-scale high performance size exclusion chromatography. These AMW fractions of NOM were then treated with chlorine or chloramine, and analysed for eight species of N-nitrosamines. Among these N-nitrosamines, N-nitrosodimethylamine (NDMA) was the most frequently detected. All AMW fractions of NOM produced N-nitrosamines upon chlorination and chloramination. Regardless of AMW characteristics, chloramination demonstrated a higher potential to form N-nitrosamines than chlorination, and a higher frequency of detection of the N-nitrosamines species was also observed in chloramination. The results showed that inorganic nitrogen may play an important role in the formation of N-nitrosamines, while organic nitrogen is not necessarily a good indicator for their formation. Since chlorination has less potential to form N-nitrosamines, chloramination in pre-chlorination mode was recommended to minimise the formation of N-nitrosamines. There was no clear trend in the formation of N-nitrosamines from chlorination of AMW fractions of NOM. However, during chloramination, NOM fractions with AMW <2.5 kDa were found to produce higher concentrations of NDMA and total N-nitrosamines. The precursor materials of N-nitrosamines appeared to be more abundant in the low to medium MW fractions of NOM, which correspond to the fractions that are most difficult to remove using conventional drinking water treatment processes. Alternative or advanced treatment processes that target the removal of low to medium MW NOM including activated carbon adsorption, biofiltration, reverse osmosis, and nanofiltration, can be employed to minimise the formation of N-nitrosamines.


Environmental Science & Technology | 2015

Mechanistic Study on the Formation of Cl-/Br-/I-Trihalomethanes during Chlorination/Chloramination Combined with a Theoretical Cytotoxicity Evaluation

Sebastien Allard; Jace Tan; Cynthia Joll; Urs von Gunten

Chlorination followed by chloramination can be used to mitigate the formation of potentially toxic iodinated disinfection byproducts (I-DBPs) while controlling the formation of regulated chloro-bromo-DBPs (Cl-/Br-DBPs). Water samples containing dissolved organic matter (DOM) isolates were subjected to 3 disinfection scenarios: NH2Cl, prechlorination followed by ammonia addition, and HOCl alone. A theoretical cytotoxicity evaluation was carried out based on the trihalomethanes (THMs) formed. This study demonstrates that the presence of bromide not only enhances the yield and rate of iodate formation, it also increases the formation of brominated I-THM precursors. A shift in the speciation from CHCl2I to the more toxic CHBr2I, as well as increased iodine incorporation in THMs, was observed in the presence of bromide. For low bromide concentrations, a decrease in I-THM formation and theoretical cytotoxicity was achieved only for high prechlorination times, while for high bromide concentrations, a short prechlorination time enabled the full conversion of iodide to iodate. For low DOM concentrations or DOM with low reactivity, Br-/I-THMs were preferentially formed for short prechlorination times, inducing high cytotoxicity. However, for high chlorine exposures, the cytotoxicity induced by the formation of regulated THMs might outweigh the benefit of I-THM mitigation. For high DOM concentrations or DOM with higher reactivity, mixed I-THMs were formed together with high concentrations of regulated THMs. In this case, based on the cytotoxicity of the THMs formed, the use of NH2Cl is recommended.


Journal of Chromatography A | 2012

Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water

Deborah Liew; Kathryn L. Linge; Cynthia Joll; Anna Heitz; Jeffrey Charrois

Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water.

Collaboration


Dive into the Cynthia Joll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urs von Gunten

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge