Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Ivana Scovassi is active.

Publication


Featured researches published by Anna Ivana Scovassi.


Molecules | 2014

Berberine, an epiphany against cancer.

Luis Miguel Guamán Ortiz; Paolo Lombardi; Micol Tillhon; Anna Ivana Scovassi

Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated.


Biology of the Cell | 2004

Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest

Marco Biggiogera; Maria Grazia Bottone; Anna Ivana Scovassi; Cristiana Soldani; Lorella Vecchio; C. Pellicciari

Abstract The aim of this paper is to review the data in the literature concerning ribonucleoprotein components during apoptosis, where a major rearrangement of RNPs takes place. In parallel with chromatin changes, the nucleoplasmic constituents (perichromatin fibrils; perichromatin granules; interchromatin granules and nuclear bodies) as well as the nucleoli aggregate into heterogeneous clusters called HERDS, in the interchromatin space. Later, these RNP‐containing structures are extruded from the nucleus and leave the cell within cytoplasmic blebs. We propose also a role for HERDS as markers of irreversible transcriptional arrest.


Journal of Medicinal Chemistry | 2009

New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies.

Giuseppe La Regina; Taradas Sarkar; Ruoli Bai; Michael C. Edler; Roberto Saletti; Antonio Coluccia; Francesco Piscitelli; Lara Minelli; Valerio Gatti; Carmela Mazzoccoli; Vanessa Palermo; Cristina Mazzoni; Claudio Falcone; Anna Ivana Scovassi; Vincenzo Giansanti; Pietro Campiglia; Amalia Porta; Bruno Maresca; Ernest Hamel; Andrea Brancale; Ettore Novellino; Romano Silvestri

New arylthioindoles along with the corresponding ketone and methylene compounds were potent tubulin assembly inhibitors. As growth inhibitors of MCF-7 cells, sulfur derivatives were superior or sometimes equivalent to the ketones, while methylene derivatives were substantially less effective. Esters 24, 27-29, 36, 39, and 41 showed approximately 50% of inhibition on human HeLa and HCT116/chr3 cells at 0.5 microM, and these compounds inhibited the growth of HEK, M14, and U937 cells with IC(50)s in the 78-220 nM range. While murine macrophage J744.1 cell growth was significantly less affected (20% at higher concentrations), four other nontransformed cell lines remained sensitive to these esters. The effect of drug treatment on cell morphology was examined by time-lapse microscopy. In a protocol set up to evaluate toxicity on the Saccharomyces cerevisiae BY4741 wild type strain, compounds 24 and 54 strongly reduced cell growth, and 29, 36, and 39 also showed significant inhibition.


Biochemical Pharmacology | 2014

Poly(ADP-ribose): A signaling molecule in different paradigms of cell death

Francesca Aredia; Anna Ivana Scovassi

Poly(ADP-ribosylation) results from the conversion of NAD(+) into ADP-ribose and the following addition of ADP-ribose units to form polymers, further bound to acceptor proteins; once post-translationally ADP-ribosylated, proteins could change their function in basic processes. Poly(ADP-ribosylation) is activated under critical situations represented by DNA damage and cellular stress, and modulated in different paradigms of cell death. The hallmarks of the main death processes, i.e. apoptosis, parthanatos, necroptosis and autophagy, will be described, focusing on the role of poly(ADP-ribose) as a signaling molecule.


Cells | 2013

Morphological Features of Organelles during Apoptosis: An Overview

Maria Grazia Bottone; Giada Santin; Francesca Aredia; Graziella Bernocchi; Carlo Pellicciari; Anna Ivana Scovassi

An apoptotic program leading to controlled cell dismantling implies perturbations of nuclear dynamics, as well as changes affecting the organelle structure and distribution. In human cancer cells driven to apoptosis by different stimuli, we have recently investigated the morphological properties of several organelles, including mitochondria, lysosomes, endoplasmic reticulum and Golgi apparatus. In this review, we will discuss the body of evidence in the literature suggesting that organelles are generally relocated and/or degraded during apoptosis, irrespectively of the apoptogenic stimulus and cell type.


Journal of Cellular and Molecular Medicine | 2013

Characterization of stress response in human retinal epithelial cells.

Vincenzo Giansanti; Gloria E. Villalpando Rodriguez; Michelle Savoldelli; Roberta Gioia; Antonella Forlino; Giuliano Mazzini; Marzia Pennati; Nadia Zaffaroni; Anna Ivana Scovassi; Alicia Torriglia

The pathogenesis of age‐related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE‐19) cells to 5‐(N,N‐hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE‐19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli.


The International Journal of Biochemistry & Cell Biology | 2009

Study of the effects of a new pyrazolecarboxamide: changes in mitochondria and induction of apoptosis.

Vincenzo Giansanti; Tania Camboni; Francesco Piscitelli; Ennio Prosperi; Giuseppe La Regina; Maria Claudia Lazzè; Giada Santin; Romano Silvestri; Anna Ivana Scovassi

Drug resistance of cancer cells is often correlated with the evasion of apoptosis, thus a major goal in cancer research is to search for compounds able to counteract cancer by promoting apoptosis. A variety of compounds with anticancer activity are characterised by the presence of the pyrazole as core nucleus. We synthesised a panel of pyrrolyl-pyrazole-carboxamides and we focused on the new compound RS 2780 (N-2-phenylethyl 1-(4-chlorophenyl)-3-methyl-5-pyrrolylpyrazole-4-carboxamide). The biological effects of RS 2780 on cell proliferation and viability were first evaluated on human HeLa cancer cells. As revealed by cell growth and viability experiments, a 24-h treatment of HeLa cells with increasing concentrations of RS 2780 (ranging from 0.1 to 100 microM) proved to inhibit cell proliferation and to affect cell viability. Notably, the new compound was effective also on colon carcinoma SW613-B3 cells, which are extremely resistant to most drugs, while it does not alter the proliferation of normal fibroblasts. We observed that RS 2780 interferes with the structural and functional properties of mitochondria, leading to the activation of the mitochondria-dependent apoptotic pathway. Apoptosis occurrence was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, PARP-1 cleavage and caspase activation. In conclusion, our results demonstrate for the first time the antiproliferative properties of the new compound RS 2780 on HeLa and SW613-B3 cancer cells and show that its effects on mitochondria lead to apoptosis.


Acta Biochimica et Biophysica Sinica | 2015

Effect of new berberine derivatives on colon cancer cells

Luis Miguel Guamán Ortiz; Anna Leta Croce; Francesca Aredia; Simone Sapienza; Gaetano Fiorillo; Tanjia Monir Syeda; Franco Buzzetti; Paolo Lombardi; Anna Ivana Scovassi

The natural alkaloid berberine has been recently described as a promising anticancer drug. In order to improve its efficacy and bioavailability, several derivatives have been designed and synthesized and found to be even more potent than the lead compound. Among the series of berberine derivatives we have produced, five compounds were identified to be able to heavily affect the proliferation of human HCT116 and SW613-B3 colon carcinoma cell lines. Remarkably, these active compounds exhibit high fluorescence emission property and ability to induce autophagy.


BioMed Research International | 2014

Multiple Effects of Berberine Derivatives on Colon Cancer Cells

Luis Miguel Guamán Ortiz; Micol Tillhon; Michael Parks; Ilaria Dutto; Ennio Prosperi; Monica Savio; Andrea G.A. Arcamone; Franco Buzzetti; Paolo Lombardi; Anna Ivana Scovassi

The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.


European Journal of Histochemistry | 2012

Fluorescence properties of the Na+/H+exchanger inhibitor HMA (5-(N,N-hexamethylene)amiloride) are modulated by intracellular pH

Vincenzo Giansanti; G. Santamaria; Alicia Torriglia; Francesca Aredia; Anna Ivana Scovassi; Giovanni Bottiroli; Anna Cleta Croce

HMA (5-(N,N-hexamethylene)amiloride), which belongs to a family of novel amiloride derivatives, is one of the most effective inhibitors of Na+/H+ exchangers, while uneffective against Na+ channels and Na+/Ca2+ exchangers. In this study, we provided evidence that HMA can act as a fluorescent probe. In fact, human retinal ARPE19 cells incubated with HMA show an intense bluish fluorescence in the cytoplasm when observed at microscope under conventional UV-excitation conditions. Interestingly, a prolonged observation under continuous exposure to excitation lightdoes not induce great changes in cells incubated with HMA for times up to about 5 min, while an unexpected rapid increase in fluorescence signal is observed in cells incubated for longer times. The latter phenomenon is particularly evident in the perinuclear region and in discrete spots in the cytoplasm. Since HMA modulates intracellular acidity, the dependence of its fluorescence properties on medium pH and response upon irradiation have been investigated in solution, at pH 5.0 and pH 7.2. The changes in both spectral shape and amplitude emission indicate a marked pH influence on HMA fluorescence properties, making HMA exploitable as a self biomarker of pH alterations in cell studies, in the absence of perturbations induced by the administration of other exogenous dyes.

Collaboration


Dive into the Anna Ivana Scovassi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Coluccia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ettore Novellino

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge