Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Jarocińska is active.

Publication


Featured researches published by Anna Jarocińska.


Miscellanea geographica | 2016

The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains

Anna Jarocińska; Monika Kacprzyk; Adriana Marcinkowska-Ochtyra; Adrian Ochtyra; Bogdan Zagajewski; Koen Meuleman

Abstract Information about vegetation condition is needed for the effective management of natural resources and the estimation of the effectiveness of nature conservation. The aim of the study was to analyse the condition of non-forest mountain communities: synanthropic communities and natural grasslands. UNESCO’s M&B Karkonosze Transboundary Biosphere Reserve was selected as the research area. The analysis was based on 40 field test polygons and APEX hyperspectral images. The field measurements allowed the collection of biophysical parameters - Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and chlorophyll content - which were correlated with vegetation indices calculated using the APEX images. Correlations were observed between the vegetation indices (general condition, plant structure) and total area of leaves (LAI), as well as fraction of Absorbed Photosynthetically Active Radiation (fAPAR). The outcomes show that the non-forest communities in the Karkonosze are in good condition, with the synanthropic communities characterised by better condition compared to the natural communities.


International Journal of Remote Sensing | 2017

Subalpine and alpine vegetation classification based on hyperspectral APEX and simulated EnMAP images

Adriana Marcinkowska-Ochtyra; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Bronisław Wojtuń; Christian Rogass; Christian Mielke; Samantha Lavender

ABSTRACT The characterization of vegetation is a very important ecological task, especially in sensitive mountain areas, as alpine regions often respond to small short-term variations of abiotic and biotic components as well as long-term global changes. Spatial techniques, such as imaging spectroscopy, allow for detailed classification of different syntaxonomic categories of vegetation and their status. Based on the Airborne Prism Experiment (APEX) and simulated Environmental Mapping and Analysis Program (EnMAP) data, this study focused on subalpine and alpine vegetation mapping in the eastern part of the Polish Karkonosze National Park (KPN). The spatial resolution of APEX (3.12 m) enabled the classification of 21 vegetation communities, which was generalized into eight vegetation types. These types were identified on scaled-up APEX data, as both 252 bands from most of the spectral range and a spectrally reduced dataset of 30 minimum noise fraction (MNF) transforms, and compared to the simulated (30 m spatial resolution) EnMAP data using test areas extracted from the field survey derived reference non-forest vegetation map. After preprocessing, a pixel purity index (PPI) was calculated using the MNF image and then the training and validation pixels were selected with Support Vector Machine classification of vegetation communities carried out using different kernel functions: linear, polynomial, radial basis function, and sigmoid. The classification accuracy was obtained for 21 base classes, and the best result was achieved by using the linear function and 252 bands (overall accuracy (OA) of 74.39%). The next step was to classify the eight generalized vegetation types, and the OA for the APEX data reached 90.72% while EnMAP reached 78.25%. The results show the potential use of APEX and EnMAP imagery in mapping subalpine and alpine vegetation on a community and vegetation-type scales, within a diverse ecosystem such as the Karkonosze National Park.


Miscellanea geographica | 2014

Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines

Adriana Marcinkowska; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Edwin Raczko; Lucie Kupková; Premysl Stych; Koen Meuleman

Abstract This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity. The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO). The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm. For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.


Remote Sensing | 2017

Intraspecific differences in spectral reflectance curves as indicators of reduced vitality in high-arctic plants

Bogdan Zagajewski; Hans Tømmervik; Jarle W. Bjerke; Edwin Raczko; Zbigniew Bochenek; Andrzej Kłos; Anna Jarocińska; Samantha Lavender; Dariusz Ziółkowski

Remote sensing is a suitable candidate for monitoring rapid changes in Polar regions, offering high-resolution spectral, spatial and radiometric data. This paper focuses on the spectral properties of dominant plant species acquired during the first week of August 2015. Twenty-eight plots were selected, which could easily be identified in the field as well as on RapidEye satellite imagery. Spectral measurements of individual species were acquired, and heavy metal contamination stress factors were measured contemporaneously. As a result, a unique spectral library of dominant plant species, heavy metal concentrations and damage ratios were achieved with an indication that species-specific changes due to environmental conditions can best be differentiated in the 1401–2400 nm spectral region. Two key arctic tundra species, Cassiope tetragona and Dryas octopetala, exhibited significant differences in this spectral region that were linked to a changing health status. Relationships between field and satellite measurements were comparable, e.g., the Red Edge Normalized Difference Vegetation Index (RENDVI) showed a strong and significant relationship (R2 = 0.82; p = 0.036) for the species Dryas octopetala. Cadmium and Lead were below detection levels while manganese, copper and zinc acquired near Longyearbyen were at concentrations comparable to other places in Svalbard. There were high levels of nickel near Longyearbyen (0.014 mg/g), while it was low (0.004 mg/g) elsewhere.


Miscellanea geographica | 2014

Radiative Transfer Model parametrization for simulating the reflectance of meadow vegetation

Anna Jarocińska

Abstract Natural vegetation is complex and its reflectance is not easy to model. The aim of this study was to adjust the Radiative Transfer Model parameters for modelling the reflectance of heterogeneous meadows and evaluate its accuracy dependent on the vegetation characteristics. PROSAIL input parameters and reference spectra were collected during field measurements. Two different datasets were created: in the first, the input parameters were modelled using only field measurements; in the second, three input parameters were adjusted to minimize the differences between modelled and measured spectra. Reflectance was modelled using two datasets and then verified based on field reflectance using the RMSE. The average RMSE for the first dataset was equal to 0.1058, the second was 0.0362. The accuracy of the simulated spectra was analysed dependent on the value of the biophysical parameters. Better results were obtained for meadows with higher biomass value, greater LAI and lower water content.


Miscellanea geographica | 2016

Assessment of Imaging Spectroscopy for rock identification in the Karkonosze Mountains, Poland

Monika Mierczyk; Bogdan Zagajewski; Anna Jarocińska; Roksana Knapik

Abstract Based on laboratory, field and airborne-acquired hyperspectral data, this paper aims to analyse the dominant minerals and rocks found in the Polish Karkonosze Mountains. Laboratory spectral characteristics were measured with the ASD FieldSpec 3 spectrometer and images were obtained from VITO’s Airborne Prism EXperiment (APEX) scanner. The terrain is covered mainly by lichens or vascular plants creating significant difficulties for rock identification. However, hyperspectral airborne imagery allowed for subpixel classifications of different types of granites, hornfels and mica schist within the research area. The hyperspectral data enabled geological mapping of bare ground that had been masked out using three advanced algorithms: Spectral Angle Mapper, Linear Spectral Unmixing and Matched Filtering. Though all three methods produced positive results, the Matched Filtering method proved to be the most effective. The result of this study was a set of maps and post classification statistical data of rock distribution in the area, one for each method of classification.


Remote Sensing | 2018

Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery

Adriana Marcinkowska-Ochtyra; Bogdan Zagajewski; Edwin Raczko; Adrian Ochtyra; Anna Jarocińska

Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX) hyperspectral images, registered in 288 spectral bands (10 September 2012). As the classification algorithm, Support Vector Machines (SVM) was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA) was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA) and sixteen out of twenty-four of user accuracy (UA). APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.


Archive | 2018

Application of the AISA Hyperspectral Image for Verification of Sediment Transport Results Obtained from CCHE2D Hydrodynamic Model—Zegrze Reservoir Case Study, Poland

Artur Magnuszewski; Anita Sabat; Anna Jarocińska; Łukasz Sławik

Zegrze Reservoir was built on the Narew River and its tributary Bug River in the period 1957–1963. The hydraulic conditions at the Bug River mouth had been studied with the use of hydrodynamic two dimensional model CCHE2D. Distribution of the sediment transport was recorded by the AISA hyperspectral scanner and shown as a remote sensing index of Red Edge Normalized Difference Vegetation Index—NDVI705 and Total Suspended Solids—TSS. Results of suspended sediments concentration from the CCHE2D model had been converted to a graphical (vector) form and compared with remote sensing indexes. Relationship between remote sensing indexes and CCHE2D model simulation results had been evaluated using statistical method of Spearman correlation.


Spectroscopy | 2018

Optimal Band Configuration for the Roof Surface Characterization Using Hyperspectral and LiDAR Imaging

Prakash Nimbalkar; Anna Jarocińska; Bogdan Zagajewski

Imaging spectroscopy in the remote sensing is an ever emerging platform that has offered the hyperspectral imaging (HSI) which delivers the Earth’s object information in hundreds of bands. HSI integrates conventional imaging with spectroscopy to get rich spectral and spatial features of the object. However, the challenges associated with HSI are its huge dimensionality and data redundancy that requests huge space, complex computations, and lengthier processing time. Therefore, this study aims to find the optimal bands to characterize the roof surfaces using supervised classifiers. To deal with high dimensionality of hyperspectral data, this study assesses the band selection method over data transformation methods. This study provides the comparison between data reduction methods and used classifiers. The height information from LiDAR was used to characterize urban roofs above the height of 2.5 meters. The optimal bands were investigated using supervised classifiers such as artificial neural network (ANN), support vector machine (SVM), and spectral angle mapper (SAM) by comparing accuracies. The classification result shows that ANN and SVM classifiers outperform whereas SAM performed poorly in roof characterization. The band selection method worked efficiently than the transformation methods. The classification algorithm successfully identifies the optimum bands with significant accuracy.


Miscellanea geographica | 2018

Application of aerial hyperspectral images in monitoring tree biophysical parameters in urban areas

Anna Jarocińska; Małgorzata Białczak; Łukasz Sławik

Abstract Monitoring of trees in urban areas can be conducted using remote sensing, but should be supported by field measurements. The article aims to present the research method used to evaluate discolouration and defoliation of trees and tree damage in the city of Białystok in Poland. The analyses were done using AISA hyperspectral images. Field measurements encompassed determining the locations, species and levels of discolouration and defoliation of trees. Remote sensing indices of vegetation were calculated and correlated with the field-measured values of discolouration and defoliation. Based on that, values of discolouration and defoliation were calculated and evaluated against the field studies. The RMSE of the acquired data was around 16%. Using parameter values, a map of tree damage was drawn up. Based on the analysis, it can be stated that a significant number of trees is undamaged, although a large portion of the trees falls into the warning class.

Collaboration


Dive into the Anna Jarocińska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge