Edwin Raczko
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edwin Raczko.
European Journal of Remote Sensing | 2017
Edwin Raczko; Bogdan Zagajewski
ABSTRACT Knowledge of tree species composition in a forest is an important topic in forest management. Accurate tree species maps allow for much more detailed and in-depth analysis of biophysical forest variables. The paper presents a comparison of three classification algorithms: support vector machines (SVM), random forest (RF) and artificial neural networks (ANN) for tree species classification using airborne hyperspectral data from the Airborne Prism EXperiment sensor. The aim of this paper is to evaluate the three nonparametric classification algorithms (SVM, RF and ANN) in an attempt to classify the five most common tree species of the Szklarska Poręba area: spruce (Picea alba L. Karst), larch (Larix decidua Mill.), alder (Alnus Mill), beech (Fagus sylvatica L.) and birch (Betula pendula Roth). To avoid human introduced biases a 0.632 bootstrap procedure was used during evaluation of each compared classifier. Of all compared classification results, ANN achieved the highest median overall classification accuracy (77%) followed by SVM with 68% and RF with 62%. Analysis of the stability of results concluded that RF and SVM had the lowest variance of overall accuracy and kappa coefficient (12 percentage points) while ANN had 15 percentage points variance in results.
Miscellanea geographica | 2014
Adriana Marcinkowska; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Edwin Raczko; Lucie Kupková; Premysl Stych; Koen Meuleman
Abstract This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity. The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO). The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm. For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.
Remote Sensing | 2017
Bogdan Zagajewski; Hans Tømmervik; Jarle W. Bjerke; Edwin Raczko; Zbigniew Bochenek; Andrzej Kłos; Anna Jarocińska; Samantha Lavender; Dariusz Ziółkowski
Remote sensing is a suitable candidate for monitoring rapid changes in Polar regions, offering high-resolution spectral, spatial and radiometric data. This paper focuses on the spectral properties of dominant plant species acquired during the first week of August 2015. Twenty-eight plots were selected, which could easily be identified in the field as well as on RapidEye satellite imagery. Spectral measurements of individual species were acquired, and heavy metal contamination stress factors were measured contemporaneously. As a result, a unique spectral library of dominant plant species, heavy metal concentrations and damage ratios were achieved with an indication that species-specific changes due to environmental conditions can best be differentiated in the 1401–2400 nm spectral region. Two key arctic tundra species, Cassiope tetragona and Dryas octopetala, exhibited significant differences in this spectral region that were linked to a changing health status. Relationships between field and satellite measurements were comparable, e.g., the Red Edge Normalized Difference Vegetation Index (RENDVI) showed a strong and significant relationship (R2 = 0.82; p = 0.036) for the species Dryas octopetala. Cadmium and Lead were below detection levels while manganese, copper and zinc acquired near Longyearbyen were at concentrations comparable to other places in Svalbard. There were high levels of nickel near Longyearbyen (0.014 mg/g), while it was low (0.004 mg/g) elsewhere.
Remote Sensing | 2018
Adriana Marcinkowska-Ochtyra; Bogdan Zagajewski; Edwin Raczko; Adrian Ochtyra; Anna Jarocińska
Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX) hyperspectral images, registered in 288 spectral bands (10 September 2012). As the classification algorithm, Support Vector Machines (SVM) was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA) was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA) and sixteen out of twenty-four of user accuracy (UA). APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.
Remote Sensing | 2018
Edwin Raczko; Bogdan Zagajewski
Knowledge of tree species composition is obligatory in forest management. Accurate tree species maps allow for detailed analysis of a forest ecosystem and its interactions with the environment. The research presented here focused on developing methods of tree species identification using aerial hyperspectral data. The research area is located in Southwestern Poland and covers the Karkonoski National Park (KNP), which was significantly damaged by acid rain and pest infestation in the 1980s. High-resolution (3.35 m) Airborne Prism Experiment (APEX) hyperspectral images (288 spectral bands in the range of 413 to 2440 nm) were used as a basis for tree species classification. Beech (Fagus sylvatica), birch (Betula pendula), alder (Alnus incana), larch (Larix decidua), pine (Pinus sylvestris), and spruce (Picea abies) were classified. The classification algorithm used was feed-forward multilayered perceptron (MLP) with a single hidden layer. To simulate such a network, we used the R programming environment and the nnet package. To provide more accurate measurement of accuracy, iterative accuracy assessment was performed. The final tree species maps cover the whole area of KNP; a median overall accuracy (OA) of 87% was achieved, with median producer accuracy (PA) for all classes exceeding 68%. The best-classified classes were spruce, beech, and birch, with median producer accuracy of 93%, 88% and 83%, respectively. The pine class achieved the lowest median producer and user accuracies (68% and 75%, respectively). The results show great potential for the use of hyperspectral data as a tool for identifying tree species locations in diverse mountainous forest.
European Journal of Remote Sensing | 2018
Anita Sabat-Tomala; Anna Jarocińska; Bogdan Zagajewski; Artur Magnuszewski; Łukasz Sławik; Adrian Ochtyra; Edwin Raczko; Jerzy Ryszard Lechnio
ABSTRACT This research focuses on the use of HySpex hyperspectral images for verification of two-dimensional hydrodynamic modelling of open-channel flow over loose bed (CCHE2D) and assessment of water quality in the Zegrze Reservoir. The CCHE2D hydrodynamic model results show the distribution of hydraulic parameters of water flow and the sediment concentrations in the reservoir. HySpex images were used to obtain remote sensing indices of water quality. The images were compared to the hydrodynamic model results and field measurements. The analysis of hydrodynamic model results and hyperspectral image indices show the spatial distribution of the water’s physico-chemical properties in the reservoir, and poor mixing of the Bug River and the Narew River at their confluence. This study shows that there is synergy potential in using hydrodynamic modelling results and remote sensing indices of water quality for analysis of the reservoir’s water quality.
Sylwan | 2015
Edwin Raczko; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Adriana Marcinkowska-Ochtyra; Marek Dobrowolski
Archive | 2017
Edwin Raczko
Sylwan | 2015
Edwin Raczko; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Adriana Marcinkowska-Ochtyra; Marek Dobrowolski
Konferencja Naukowa z okazji 55-lecia Karkonoskiego Parku Narodowego: 25 lat po klęsce ekologicznej w Karkonoszach i Górach Izerskich – obawy a rzeczywistość | 2014
Adriana Marcinkowska-Ochtyra; Bogdan Zagajewski; Adrian Ochtyra; Anna Jarocińska; Edwin Raczko; Bronisław Wojtuń; Lidia Przewoźnik