Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Ledin is active.

Publication


Featured researches published by Anna Ledin.


Critical Reviews in Environmental Science and Technology | 2002

Present and Long-Term Composition of MSW Landfill Leachate: A Review

Peter Kjeldsen; Morton A. Barlaz; Alix P. Rooker; Anders Baun; Anna Ledin; Thomas Højlund Christensen

The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobiotic organic compounds). Existing data show high leachate concentrations of all components in the early acid phase due to strong decomposition and leaching. In the long methanogenic phase a more stable leachate, with lower concentrations and a low BOD/COD-ratio, is observed. Generally, very low concentrations of heavy metals are observed. In contrast, the concentration of ammonia does not decrease, and often constitutes a major long-term pollutant in leachate. A broad range of xenobiotic organic compounds is observed in landfill leachate. The long-term behavior of landfills with respect to changes in oxidation-reduction status is discussed based on theory and model simulations. It seems that the somewhere postulated enhanced release of accumulated heavy metals would not take place within the time frames of thousands of years. This is supported by a few laboratory investigations. The existing data and model evaluations indicate that the xenobiotic organic compounds in most cases do not constitute a major long-term problem. This may suggest that ammonia will be of most concern in the long run.


Urban Water | 2002

Characteristics of grey wastewater

Eva Eriksson; Karina Pipaluk Solvejg Auffarth; Mogens Henze; Anna Ledin

The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic matter and nutrients compared to ordinary wastewater, since urine, faeces and toilet paper are not included. The levels of heavy metals are however in the same concentration range. The information regarding the content of xenobiotic organic compounds (XOCs) is limited. From this study, 900 different XOCs were identified as potentially present in grey wastewater by the use of tables of contents of household chemical products.


Water Research | 2011

Determination of sorption of seventy-five pharmaceuticals in sewage sludge

Maritha Hörsing; Anna Ledin; Roman Grabic; Jerker Fick; Mats Tysklind; Jes la Cour Jansen; Henrik Rasmus Andersen

Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L(-1) to μg L(-1) which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1×10(4) and 3.8×10(7), 1.1×10(-2) and 6.1×10(4) and 9.2×10(-3) and 1.1 L kg(-1), respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%).


Marine Chemistry | 2000

Colloid dynamics and transport of major elements through a boreal river — brackish bay mixing zone

Örjan Gustafsson; Anders Widerlund; Per Andersson; Johan Ingri; Per Roos; Anna Ledin

Abstract A range of biogeochemical methodologies were applied to investigate how aggregation processes affected the phase distribution and mixing of Fe, Si, and organic carbon between the Kalix River and the Bothnic Bay, northernmost Baltic Sea (salinity≤3; the low-salinity zone (LSZ) was stretching over 60 km in the spring). During the dynamic springflood conditions studied, small 238 U– 234 Th disequilibria, low sediment trap fluxes, laboratory mixing experiments, as well as results from an independent two-box, two-dimensional mixing model combine to suggest that no significant removal of Fe, Si, or organic C was occurring in the highly-resolved LSZ. While no conclusions may be drawn based solely on property–salinity plots over narrow salinity ranges, apparently linear graphs for Fe and Si over 3 separate years also suggest minimal removal in this regime. At the same time, size distributions both of elements —from cross-flow ultrafiltration — and of bulk suspended solids — from light scattering (photon correlation spectroscopy [PCS]) — indicated that significant aggregation was taking place. The aggregation-without-significant-settling scenario in this low-salinity mixing regime, with a geochemistry similar to that of neighboring Russian Arctic rivers, is hypothesized to result from a comparatively high organic-to-detrital matter characteristic of the aggregates. While first principles would indeed suggest that decreasing electrostatic repulsion during mixing lead to aggregation, a low specific density of mineral-poor amorphous organic aggregates may lead to transport of these authigenic particles further away from the river mouth. The role of detrital “sinkers” on vertical removal of suspended organic matter is discussed in the wider context of scavenging mechanisms in the ocean.


Journal of Contaminant Hydrology | 2003

Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark)

Anders Baun; Lotte Reitzel; Anna Ledin; Thomas Højlund Christensen; Poul Løgstrup Bjerg

Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.


Journal of Contaminant Hydrology | 2003

In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark)

Hans H. Richnow; Rainer U. Meckenstock; Lotte Reitzel; Anders Baun; Anna Ledin; Thomas Højlund Christensen

Concentrations and isotopic compositions (13C/12C) of aromatic hydrocarbons were determined in eight samples obtained from the strongly anoxic part of the leachate plume downgradient from the Vejen Landfill (Denmark), where methanogenic, sulfate-reducing and iron-reducing conditions were observed. Despite the heterogeneous distribution of the compounds in the plume, the isotope fractionation proved that ethylbenzene and m/p-xylene were subject to significant biodegradation within the strongly anoxic plume. The isotope fractionation factors (alphaC) for the degradation of the m/p-xylene (1.0015) and ethylbenzene (1.0021) obtained from the field observations were similar to factors previously determined for the anaerobic degradation of toluene and o-xylene in laboratory experiments, and suggest that in situ biodegradation is one major process controlling the fate of these contaminants in this aquifer. The isotope fractionation determined for 1,2,4-trimethylbenzene and 2-ethyltoluene suggested in situ biodegradation; however, the isotopic composition did not correlate well with the respective concentration as expressed by the Rayleigh equation. Some other compounds (1,2,3-trimethylbenzene, o-xylene, naphthalene and fenchone) did not show significant enrichments in delta13C values along the flow path. The compound concentrations were too low for accurate isotope analyses of benzene, toluene, 1- and 2-methylnaphthalene, while interferences in the chromatography made it impossible to evaluate the isotopic composition for 4-ethyltoluene, 1,3,5-trimethylbenzene and camphor. In addition to demonstrating the potential of assessing isotopic fractionation as a means for documenting the in situ biodegradation of complex mixtures of aromatic hydrocarbons in leachate plumes, this study also illustrates the difficulties for data interpretation in complex plumes and high analytical uncertainties for isotope analysis of organic compounds in low concentration ranges.


Water Research | 2003

Mono- and diesters from o-phthalic acid in leachates from different European landfills

Susanne Jonsson; Jörgen Ejlertsson; Anna Ledin; Ivo Mersiowsky; Bo H. Svensson

Leachates from 17 different landfills in Europe were analysed with respect to phthalates, i.e. phthalic acid diesters (PAEs) and their degradation products phthalic acid monoesters (PMEs) and ortho-phthalic acid (PA). Diesters are ubiquitous and the human possible exposure and potential to human health and environment has put them in focus. The aim of this study was to elucidate whether monoesters and phthalic acid could be traced in landfill leachates and in what concentrations they may be found. The results showed that phthalates were present in the majority of the leachates investigated. The monoesters appeared from 1 to 20 microg/L and phthalic acid 2-880 microg/L (one divergent value of 19 mg phthalic acid/L). Their parental diesters were observed from 1 to 460 microg/L. These observed occurrences of degradation products, of all diesters studied, support that they are degraded under the landfill conditions covered by this study. Thus, we have presented strong evidences to conclude that microorganisms in landfills degrade diesters released from formulations in a variety of products, including polyvinyl chloride (PVC) species.


Science of The Total Environment | 2013

Ecotoxicity of carbamazepine and its UV photolysis transformation products

Erica Donner; Tina Kosjek; Signe Qualmann; Kresten Ole Kusk; Ester Heath; D. Michael Revitt; Anna Ledin; Henrik Rasmus Andersen

Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during ultraviolet (UV) photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L(-1) carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound, and all three ecotoxicity endpoints were still inhibited >60% relative to control populations upon dosing with 90+min UV-treated carbamazepine solution. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself may be produced during UV-treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds.


Water Science and Technology | 2012

Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants

Per Falås; Henrik Rasmus Andersen; Anna Ledin; Jes la Cour Jansen

During the last decade, several screening programs for pharmaceuticals at Swedish wastewater treatment plants (WWTPs) have been conducted by research institutes, county councils, and wastewater treatment companies. In this study, influent and effluent concentrations compiled from these screening programs were used to assess the occurrence and reduction of non-antibiotic pharmaceuticals for human usage. The study is limited to full-scale WWTPs with biological treatment. Based on the data compiled, a total of 70 non-antibiotic pharmaceuticals have been detected, at concentrations ranging from a few ng/L to several μg/L, in the influent water. The influent concentrations were compared with the sale volumes and for many pharmaceuticals it was shown that only a small fraction of the amount sold reaches WWTPs as dissolved parent compounds. Pharmaceuticals with low reduction degrees at traditional WWTPs were identified. Further comparison based on the biological treatment showed lower reduction degrees for several pharmaceuticals in trickling filter plants compared with activated sludge plants with nitrogen removal.


Environmental Technology | 2012

Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid

G. Hey; Anna Ledin; Jes la Cour Jansen; Henrik Rasmus Andersen

Removal of six active pharmaceutical ingredients in wastewater was investigated using chlorine dioxide (ClO2) or peracetic acid (PAA) as chemical oxidants. Four non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, diclofenac and mefenamic acid) and two lipid-regulating agents (gemfibrozil and clofibric acid, a metabolite of clofibrate) were used as target substances at 40 μg/L initial concentration. Three different wastewaters types originating from two wastewater treatment plants (WWTPs) were used. One wastewater was collected after extended nitrogen removal in activated sludge, one after treatment with high-loaded activated sludge without nitrification, and one from the final effluent from the same plant where nitrogen removal was made in trickling filters for nitrification and moving-bed biofilm reactors for denitrification following the high-loaded plant. Of the six investigated compounds, only clofibric acid and ibuprofen were not removed when treated with ClO2 up to 20 mg/L. With increasing PAA dose up to 50 mg/L, significant removal of most of the pharmaceuticals was observed except for the wastewater with the highest chemical oxygen demand (COD). This indicates that chemical oxidation with ClO2 could be used for tertiary treatment at WWTPs for active pharmaceutical ingredients, whereas PAA was not sufficiently efficient.

Collaboration


Dive into the Anna Ledin's collaboration.

Top Co-Authors

Avatar

Peter Steen Mikkelsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Eva Eriksson

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anders Baun

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Henrik Rasmus Andersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Mogens Henze

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Donner

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Luca Vezzaro

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Poul Løgstrup Bjerg

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge