Anna Lewandowska-Sabat
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Lewandowska-Sabat.
Molecular Ecology | 2010
Anna Lewandowska-Sabat; Siri Fjellheim; Odd Arne Rognli
The genetic diversity and population structure of Arabidopsis thaliana populations from Norway were studied and compared to a worldwide sample of A. thaliana to investigate the demographic history and elucidate possible colonization routes of populations at the northernmost species limit. We genotyped 282 individuals from 31 local populations using 149 single nucleotide polymorphism markers. A high level of population subdivision (FST = 0.85 ± 0.007) was found indicating that A. thaliana is highly structured at the regional level. Significant relationships between genetic and geographical distances were found, suggesting an isolation by distance mode of evolution. Genetic diversity was much lower, and the level of linkage disequilibrium was higher in populations from the north (65–68°N) compared to populations from the south (59–62°N); this is consistent with a northward expansion pattern. A neighbour‐joining tree showed that populations from northern Norway form a separate cluster, while the remaining populations are distributed over a few minor clusters. Minimal gene flow seems to have occurred between populations in different regions, especially between the geographically distant northern and southern populations. Our data suggest that northern populations represent a homogenous group that may have been established from a few founders during northward expansions, while populations in the central part of Norway constitute an admixed group established by founders of different origins, most probably as a result of human‐mediated gene flow. Moreover, Norwegian populations appeared to be homogenous and isolated compared to a worldwide sample of A. thaliana, but they are still grouped with Swedish populations, which may indicate common colonization histories.
Frontiers in Cell and Developmental Biology | 2015
Malin R. Reiten; Maren K. Bakkebø; Hege Brun-Hansen; Anna Lewandowska-Sabat; Ingrid Olsaker; Michael A. Tranulis; Arild Espenes; Preben Boysen
The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC.
Frontiers in Immunology | 2016
Hege Lund; Preben Boysen; Caroline Piercey Åkesson; Anna Lewandowska-Sabat; Anne K. Storset
The dynamics of skin-draining cells following infection or vaccination provide important insight into the initiation of immune responses. In this study, the local recruitment and activation of immune cells in draining lymph nodes (LNs) was studied in calves in an adjuvant-induced inflammation. A transient but remarkably strong recruitment of monocytes was demonstrated after onset of inflammation, constituting up to 41% of live cells in the draining LNs after 24 h. Numerous CD14+ cells were visualized in subcutaneous tissues and draining LNs, and the majority of these cells did not express dendritic cell-associated markers CD205 and CD11c. In the LNs, recruited cells were predominately of a CD14++ and CD16+ phenotype, consistent with an intermediate monocyte subset characterized to possess a high inflammatory potential. Moreover, monocytes from the draining LN showed a high expression of genes coding for pro-inflammatory cytokines, including IL-1β, IL-6, TNFa, and TGFβ. Shortly after their appearance in the LN cortical areas, the monocytes had moved into the medulla followed by an increase in peripheral blood. In conclusion, this study provides novel information on in vivo monocyte recruitment and migration after onset of inflammation.
Aquatic Toxicology | 2017
Thomas W. K. Fraser; Abdolrahman Khezri; Anna Lewandowska-Sabat; Theodore B. Henry; Erik Ropstad
Larval zebrafish (Danio rerio) are a tool for assessing endocrine disruption during early development. Here, we investigated the extent to which a simple light/dark behavioral test at five days post fertilization could compliment current methods within the field. We exposed fertilized embryos to hormones (17β-estradiol, testosterone, dihydrotestosterone, 11-ketotestosterone, thyroxine, triiodothyronine, progesterone, and hydrocortisone) and other relevant compounds (17α ethinylestradiol, bisphenol A, bisphenol S, nonylphenol, flutamide, nilutamide, linuron, drospirenone, potassium perchlorate, mifepristone, and fadrozole) to screen for behavioral effects between 96 and 118h post fertilization (hpf). With the exception of progesterone, all the hormones tested resulted in altered behaviors. However, some inconsistencies were observed regarding the age of the larvae at testing. For example, the xenoestrogens 17α- ethinylestradiol and nonylphenol had behavioral effects at 96hpf, but not at 118hpf. Furthermore, although thyroxine exposure had pronounced effects on behavior, the thyroid disruptor potassium perchlorate did not. Finally, we were unable to demonstrate a role of nuclear receptors following testosterone and 17α- ethinylestradiol exposure, as neither the androgen receptor antagonist flutamide nor the general estrogen receptor inhibitor fulvestrant (ICI) could rescue the observed behavioral effects, respectively. Similarly, molecular markers for androgen and estrogen disruption were upregulated at concentrations below which behavioral effects were observed. These results demonstrate hormones and endocrine disruptors can alter the behavior of larval zebrafish, but the mechanistic pathways remain unclear.
Toxicology Letters | 2017
Thomas W. K. Fraser; Abdolrahman Khezri; Juan G. H. Jusdado; Anna Lewandowska-Sabat; Theodore B. Henry; Erik Ropstad
Alterations in zebrafish motility are used to identify neurotoxic compounds, but few have reported how methodology may affect results. To investigate this, we exposed embryos to bisphenol A (BPA) or tetrabromobisphenol A (TBBPA) before assessing larval motility. Embryos were maintained on a day/night cycle (DN) or in constant darkness, were reared in 96 or 24 well plates (BPA only), and behavioural tests were carried out at 96, 100, or 118 (BPA only) hours post fertilisation (hpf). We found that the prior photo-regime, larval age, and/or arena size influence behavioural outcomes in response to toxicant exposure. For example, methodology determined whether 10μM BPA induced hyperactivity, hypoactivity, or had no behavioural effect. Furthermore, the minimum effect concentration was not consistent between different methodologies. Finally, we observed a mechanism previously used to explain hyperactivity following BPA exposure does not appear to explain the hypoactivity observed following minor alterations in methodology. Therefore, we demonstrate how methodology can have notable implications on dose responses and behavioural outcomes in larval zebrafish motility following identical chemical exposures. As such, our results have significant consequences for human and environmental risk assessment.
Frontiers in Plant Science | 2017
Anna Lewandowska-Sabat; Siri Fjellheim; Jorunn E. Olsen; Odd Arne Rognli
Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana.
Plant Science | 2012
Anna Lewandowska-Sabat; Per Winge; Siri Fjellheim; Guro Dørum; Atle M. Bones; Odd Arne Rognli
Three Arabidopsis thaliana accessions originating from the northernmost boundary of the species distribution in Norway (59-68°N) were used to study global wide transcriptional responses to 16 and 24 h photoperiods during flower initiation. Significant analysis of microarrays (SAM), analyses of statistically overrepresented gene ontologies (GOstat) and gene set enrichment analyses (GSEA) were used to identify candidate genes and genetic pathways underlying phenotypic adaptations of accessions to different photoperiods. Statistical analyses identified 732 and 258 differentially expressed genes between accessions in 16 and 24 h photoperiod, respectively. Among significantly expressed genes, ethylene mediated signaling pathway was significantly overrepresented in 16 h photoperiod, while genes involved in response to auxin stimulus were found to be significantly overrepresented in 24 h photoperiod. Several gene sets were found to be differentially expressed among accessions, e.g. cold acclimation, dehydration response, phytochrome signaling, vernalization response and circadian clock regulated flowering time genes. These results revealed several candidate genes and pathways likely involved in transcriptional control of photoperiodic response. In particular, ethylene and auxin signaling pathway may represent candidate genes contributing to local adaptation of high-latitude accessions of A. thaliana.
BMC Genomics | 2013
Anna Lewandowska-Sabat; Guro Margrethe Boman; Alison Downing; Richard Talbot; Anne K. Storset; Ingrid Olsaker
Environmental and Experimental Botany | 2012
Anna Lewandowska-Sabat; Siri Fjellheim; Odd Arne Rognli
Genetics Selection Evolution | 2016
Hanne Gro Olsen; Tim Martin Knutsen; Anna Lewandowska-Sabat; Harald Grove; Torfinn Nome; Morten Svendsen; Mariann Arnyasi; Marte Sodeland; Kristil Kindem Sundsaasen; Sandra Rinne Dahl; B. Heringstad; Hanne Hellerud Hansen; Ingrid Olsaker; Matthew Kent; Sigbjørn Lien