Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Linderholm is active.

Publication


Featured researches published by Anna Linderholm.


Molecular Biology and Evolution | 2013

Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics

Claudio Ottoni; Linus Girdland Flink; Allowen Evin; Christina Geörg; Bea De Cupere; Wim Van Neer; László Bartosiewicz; Anna Linderholm; Ross Barnett; Joris Peters; Ronny Decorte; Marc Waelkens; Nancy Vanderheyden; François-Xavier Ricaut; Canan Çakirlar; Özlem Çevik; A. Rus Hoelzel; Marjan Mashkour; Azadeh Fatemeh Mohaseb Karimlu; Shiva Sheikhi Seno; Julie Daujat; Fiona Brock; Ron Pinhasi; Hitomi Hongo; Miguel Pérez-Enciso; Morten Rasmussen; Laurent A. F. Frantz; Hendrik-Jan Megens; R.P.M.A. Crooijmans; M.A.M. Groenen

Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.


Science | 2016

Genomic and archaeological evidence suggest a dual origin of domestic dogs

Laurent A. F. Frantz; Victoria Mullin; Maud Pionnier-Capitan; Ophélie Lebrasseur; Morgane Ollivier; Angela R. Perri; Anna Linderholm; Valeria Mattiangeli; Matthew D. Teasdale; Evangelos A. Dimopoulos; Anne Tresset; Marilyne Duffraisse; Finbar McCormick; László Bartosiewicz; Erika Gál; Éva Ágnes Nyerges; Mikhail V. Sablin; Stéphanie Bréhard; Marjan Mashkour; Adrian Bălăşescu; Benjamin Gillet; Sandrine Hughes; Olivier Chassaing; Christophe Hitte; Jean-Denis Vigne; Keith Dobney; Catherine Hänni; Daniel G. Bradley; Greger Larson

A dogged investigation of domestication The history of how wolves became our pampered pooches of today has remained controversial. Frantz et al. describe high-coverage sequencing of the genome of an Irish dog from the Bronze Age as well as ancient dog mitochondrial DNA sequences. Comparing ancient dogs to a modern worldwide panel of dogs shows an old, deep split between East Asian and Western Eurasian dogs. Thus, dogs were domesticated from two separate wolf populations on either side of the Old World. Science, this issue p. 1228 Dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.


BMC Evolutionary Biology | 2010

High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe

Helena Malmström; Anna Linderholm; Kerstin Lidén; Jan Storå; Petra Molnar; Gunilla Holmlund; Mattias Jakobsson; Anders Götherström

BackgroundGenes and culture are believed to interact, but it has been difficult to find direct evidence for the process. One candidate example that has been put forward is lactase persistence in adulthood, i.e. the ability to continue digesting the milk sugar lactose after childhood, facilitating the consumption of raw milk. This genetic trait is believed to have evolved within a short time period and to be related with the emergence of sedentary agriculture.ResultsHere we investigate the frequency of an allele (-13910*T) associated with lactase persistence in a Neolithic Scandinavian population. From the 14 individuals originally examined, 10 yielded reliable results. We find that the T allele frequency was very low (5%) in this Middle Neolithic hunter-gatherer population, and that the frequency is dramatically different from the extant Swedish population (74%).ConclusionsWe conclude that this difference in frequency could not have arisen by genetic drift and is either due to selection or, more likely, replacement of hunter-gatherer populations by sedentary agriculturalists.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific

Vicki A. Thomson; Ophélie Lebrasseur; Jeremy J. Austin; Terry L. Hunt; David A. Burney; Tim Denham; Nicolas J. Rawlence; Jamie R. Wood; Jaime Gongora; Linus Girdland Flink; Anna Linderholm; Keith Dobney; Greger Larson; Alan Cooper

Significance Ancient DNA sequences from chickens provide an opportunity to study their human-mediated dispersal across the Pacific due to the significant genetic diversity and range of archaeological material available. We analyze ancient and modern material and reveal that previous studies have been impacted by contamination with modern chicken DNA and, that as a result, there is no evidence for Polynesian dispersal of chickens to pre-Columbian South America. We identify genetic markers of authentic ancient Polynesian chickens and use them to model early chicken dispersals across the Pacific. We find connections between chickens in the Micronesian and Bismarck Islands, but no evidence these were involved in dispersals further east. We also find clues about the origins of Polynesian chickens in the Philippines. The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.


Antiquity | 2008

Diet and status in Birka. Stable isotopes and grave goods compared

Anna Linderholm; Charlotte Hedenstierna Jonson; Olle Svensk; Kerstin Lidén

In this paper the authors investigate isotopic signatures of burials from the famous Viking period cemetery at Birka in Sweden, comparing their results on diet with the status and identities of individuals as interpreted from grave goods. These first observations offer a number of promising correlations, for example the shared diet of a group of women associated with trade, and a marine emphasis among men buried with weapons.


Molecular Ecology | 2010

Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses.

Jaime Lira; Anna Linderholm; Carmen Olària; Mikael Brandström Durling; M. Thomas P. Gilbert; Hans Ellegren; Kerstin Lidén; Juan Luis Arsuaga; Anders Götherström

Multiple geographical regions have been proposed for the domestication of Equus caballus. It has been suggested, based on zooarchaeological and genetic analyses that wild horses from the Iberian Peninsula were involved in the process, and the overrepresentation of mitochondrial D1 cluster in modern Iberian horses supports this suggestion. To test this hypothesis, we analysed mitochondrial DNA from 22 ancient Iberian horse remains belonging to the Neolithic, the Bronze Age and the Middle Ages, against previously published sequences. Only the medieval Iberian sequence appeared in the D1 group. Neolithic and Bronze Age sequences grouped in other clusters, one of which (Lusitano group C) is exclusively represented by modern horses of Iberian origin. Moreover, Bronze Age Iberian sequences displayed the lowest nucleotide diversity values when compared with modern horses, ancient wild horses and other ancient domesticates using nonparametric bootstrapping analyses. We conclude that the excessive clustering of Bronze Age horses in the Lusitano group C, the observed nucleotide diversity and the local continuity from wild Neolithic Iberian to modern Iberian horses, could be explained by the use of local wild mares during an early Iberian domestication or restocking event, whereas the D1 group probably was introduced into Iberia in later historical times.


Philosophical Transactions of the Royal Society B | 2014

Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process

Helena Malmström; Anna Linderholm; Pontus Skoglund; Jan Storå; Per Sjödin; M. Thomas P. Gilbert; Gunilla Holmlund; Mattias Jakobsson; Kerstin Lidén; Anders Götherström

The European Neolithization process started around 12 000 years ago in the Near East. The introduction of agriculture spread north and west throughout Europe and a key question has been if this was brought about by migrating individuals, by an exchange of ideas or a by a mixture of these. The earliest farming evidence in Scandinavia is found within the Funnel Beaker Culture complex (Trichterbecherkultur, TRB) which represents the northernmost extension of Neolithic farmers in Europe. The TRB coexisted for almost a millennium with hunter–gatherers of the Pitted Ware Cultural complex (PWC). If migration was a substantial part of the Neolithization, even the northerly TRB community would display a closer genetic affinity to other farmer populations than to hunter–gatherer populations. We deep-sequenced the mitochondrial hypervariable region 1 from seven farmers (six TRB and one Battle Axe complex, BAC) and 13 hunter–gatherers (PWC) and authenticated the sequences using postmortem DNA damage patterns. A comparison with 124 previously published sequences from prehistoric Europe shows that the TRB individuals share a close affinity to Central European farmer populations, and that they are distinct from hunter–gatherer groups, including the geographically close and partially contemporary PWC that show a close affinity to the European Mesolithic hunter–gatherers.


Seminars in Cell & Developmental Biology | 2013

The role of humans in facilitating and sustaining coat colour variation in domestic animals

Anna Linderholm; Greger Larson

Though the process of domestication results in a wide variety of novel phenotypic and behavioural traits, coat colour variation is one of the few characteristics that distinguishes all domestic animals from their wild progenitors. A number of recent reviews have discussed and synthesised the hundreds of genes known to underlie specific coat colour patterns in a wide range of domestic animals. This review expands upon those studies by asking how what is known about the causative mutations associated with variable coat colours, can be used to address three specific questions related to the appearance of non wild-type coat colours in domestic animals. Firstly, is it possible that coat colour variation resulted as a by-product of an initial selection for tameness during the early phases of domestication? Secondly, how soon after the process began did domestic animals display coat colour variation? Lastly, what evidence is there that intentional human selection, rather than drift, is primarily responsible for the wide range of modern coat colours? By considering the presence and absence of coat colour genes within the context of the different pathways animals travelled from wild to captive populations, we conclude that coat colour variability was probably not a pleiotropic effect of the selection for tameness, that coat colours most likely appeared very soon after the domestication process began, and that humans have been actively selecting for colour novelty and thus allowing for the proliferation of new mutations in coat colour genes.


PLOS ONE | 2008

Cryptic contamination and phylogenetic nonsense.

Anna Linderholm; Helena Malmström; Kerstin Lidén; Gunilla Holmlund; Anders Götherström

Ancient human DNA has been treated cautiously ever since the problems related to this type of material were exposed in the early 1990s, but as sequential genetic data from ancient specimens have been key components in several evolutionary and ecological studies, interest in ancient human DNA is on the increase again. It is especially tempting to approach archaeological and anthropological questions through this type of material, but DNA from ancient human tissue is notoriously complicated to work with due to the risk of contamination with modern human DNA. Various ways of authenticating results based on ancient human DNA have been developed to circumvent the problems. One commonly used method is to predict what the contamination is expected to look like and then test whether the ancient human DNA fulfils this prediction. If it does, the results are rejected as contamination, while if it does not, they are often considered authentic. We show here that human contamination in ancient material may well deviate from local allele frequencies or the distributions to be found among the laboratory workers and archaeologists. We conclude that it is not reliable to authenticate ancient human DNA solely by showing that it is different from what would be expected from people who have handled the material.


Royal Society Open Science | 2016

A novel MC1R allele for black coat colour reveals the Polynesian ancestry and hybridization patterns of Hawaiian feral pigs.

Anna Linderholm; Daisy Spencer; Vincent Battista; Laurent A. F. Frantz; Ross Barnett; Robert C. Fleischer; Helen F. James; Dave Duffy; Jed P. Sparks; David R. Clements; Leif Andersson; Keith Dobney; Jennifer A. Leonard; Greger Larson

Pigs (Sus scrofa) have played an important cultural role in Hawaii since Polynesians first introduced them in approximately AD 1200. Additional varieties of pigs were introduced following Captain Cooks arrival in Hawaii in 1778 and it has been suggested that the current pig population may descend primarily, or even exclusively, from European pigs. Although populations of feral pigs today are an important source of recreational hunting on all of the major islands, they also negatively impact native plants and animals. As a result, understanding the origins of these feral pig populations has significant ramifications for discussions concerning conservation management, identity and cultural continuity on the islands. Here, we analysed a neutral mitochondrial marker and a functional nuclear coat colour marker in 57 feral Hawaiian pigs. Through the identification of a new mutation in the MC1R gene that results in black coloration, we demonstrate that Hawaiian feral pigs are mostly the descendants of those originally introduced during Polynesian settlement, though there is evidence for some admixture. As such, extant Hawaiian pigs represent a unique historical lineage that is not exclusively descended from feral pigs of European origin.

Collaboration


Dive into the Anna Linderholm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Dobney

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge