Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna M. Mastrangelo is active.

Publication


Featured researches published by Anna M. Mastrangelo.


Plant Biotechnology Journal | 2014

Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

Shichen Wang; Debbie Wong; Kerrie L. Forrest; Alexandra M. Allen; Shiaoman Chao; Bevan Emma Huang; Marco Maccaferri; Silvio Salvi; Sara Giulia Milner; Luigi Cattivelli; Anna M. Mastrangelo; Alex Whan; Stuart Stephen; Gary L. A. Barker; Ralf Wieseke; Joerg Plieske; Morten Lillemo; D. E. Mather; R. Appels; Rudy Dolferus; Gina Brown-Guedira; Abraham B. Korol; Alina Akhunova; Catherine Feuillet; Jérôme Salse; Michele Morgante; Curtis J. Pozniak; Ming-Cheng Luo; Jan Dvorak; Matthew K. Morell

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Plant Molecular Biology | 2002

Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae

Luigi Cattivelli; Paolo Baldi; Cristina Crosatti; Natale Di Fonzo; Primetta Faccioli; Maria Grossi; Anna M. Mastrangelo; N. Pecchioni; A. Michele Stanca

Drought, low temperature and salinity are the most important abiotic stress factors limiting crop productivity. A genomic map of major loci and QTLs affecting stress tolerance in Triticeae identified the crucial role of the group 5 chromosomes, where the highest concentration of QTLs and major loci controlling plants adaptation to the environment (heading date, frost and salt tolerance) has been found. In addition, a conserved region with a major role in drought tolerance has been localized to the group 7 chromosomes. Extensive molecular biological studies have led to the cloning of many stress-related genes and responsive elements. The expression of some stress-related genes was shown to be linked to stress-tolerant QTLs, suggesting that these genes may represent the molecular basis of stress tolerance. The development of suitable genetic tools will allow the role of stress-related sequences and their relationship with stress-tolerant loci to be established in the near future.


International Journal of Molecular Sciences | 2013

Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses

Daniela Marone; Maria A. Russo; Giovanni Laidò; Anna Maria De Leonardis; Anna M. Mastrangelo

The most represented group of resistance genes are those of the nucleotide binding site–leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.


Current Genomics | 2006

The E3 Ubiquitin Ligase Gene Family in Plants: Regulation by Degradation

Elisabetta Mazzucotelli; S. Belloni; Daniela Marone; A. M. De Leonardis; Davide Guerra; N. Di Fonzo; Luigi Cattivelli; Anna M. Mastrangelo

The regulation of protein expression and activity has been for long time considered only in terms of transcription/translation efficiency. In the last years, the discovery of post-transcriptional and post-translational regulation mechanisms pointed out that the key factor in determining transcript/protein amount is the synthesis/degradation ratio, together with post-translational modifications of proteins. Polyubiquitinaytion marks target proteins directed to degradation mediated by 26S-proteasome. Recent functional genomics studies pointed out that about 5% of Arabidopsis genome codes for proteins of ubiquitination pathway. The most of them (more than one thousand genes) correspond to E3 ubiquitin ligases that specifically recognise target proteins. The huge size of this gene family, whose members are involved in regulation of a number of biological processes including hormonal control of vegetative growth, plant reproduction, light response, biotic and abiotic stress tolerance and DNA repair, indicates a major role for protein degradation in control of plant life.


Plant Science | 2012

Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity.

Anna M. Mastrangelo; Daniela Marone; Giovanni Laidò; Anna Maria De Leonardis; Pasquale De Vita

Alternative splicing is a mechanism for the regulation of gene expression that is widespread in higher eukaryotes. Genome-wide approaches, based on comparison of expressed and genomic sequences, on tiling arrays, and on next-generation sequencing, have provided growing knowledge of the extent, distribution and association of alternative splicing with stress-related genes in plants. The functional meaning of alternative splicing in response to stress has been defined for many genes, and in particular for those involved in the regulation of the stress responses, such as protein kinases, transcription factors, splicing regulators and pathogen-resistance genes. The production of proteins with diverse domain rearrangements from the same gene is the main alternative splicing mechanism for pathogen-resistance genes. The plant response to abiotic stress is also characterized by a second mechanism, which consists of the expression of alternative transcripts that are targeted to nonsense-mediated decay. These quantitatively regulate stress-related gene expression. Many alternative splicing events are well conserved among plant species, and also across kingdoms, especially those observed in response to stress, for genes encoding splicing regulators, and other classes of RNA-binding proteins. Nevertheless, non-conserved events indicate that alternative splicing represents an evolutionary strategy that rapidly increases genome plasticity and develops new gene functions, along with other mechanisms such as gene duplication. Finally, the study of the naturally occurring variability of alternative splicing and the identification of genomic regions involved in the regulation of alternative splicing in crops are proposed as strategies for selecting genotypes with superior performance under adverse environmental conditions.


BMC Genomics | 2009

Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

Alessio Aprile; Anna M. Mastrangelo; Anna Maria De Leonardis; Gábor Galiba; Enrica Roncaglia; Francesco Ferrari; Luigi De Bellis; Luana Turchi; Giovanni Giuliano; Luigi Cattivelli

BackgroundWater stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS), a Chinese Spring terminal deletion line (CS_5AL-10) and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions.ResultsThe transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed) in Creso (which lacks the D genome) or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region). Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10.ConclusionBread and durum wheat genotypes were characterized by a different physiological reaction to water stress and by a substantially different molecular response. The genome organization accounted for differences in the expression level of hundreds of genes located on the D genome or controlled by regulators located on the D genome. When a genomic stress (deletion of a chromosomal region) was combined with low water availability, a molecular response based on the activation of transposons and retrotransposons was observed.


Proteomics | 2010

Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress.

Paolo Laino; Dale Shelton; Christine Finnie; Anna Maria De Leonardis; Anna M. Mastrangelo; Birte Svensson; Domenico Lafiandra; Stefania Masci

In Central and Southern Italy, where durum wheat represents one of the most widely cultivated crops, grain filling occurs during Spring, a period characterized by sudden increases in temperature. Wheat grain proteins are classified into albumins, globulins, and prolamins. The nonprolamin fractions include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2‐D patterns of nonprolamin proteins were monitored to identify polypeptides affected by heat stress during grain fill. This study shows that heat stress alters significantly the durum wheat seed proteome, although the changes range is only between 1.2‐ and 2.2‐fold. This analysis revealed 132 differentially expressed polypeptides, 47 of which were identified by MALDI‐TOF and MALDI‐TOF‐TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress‐related proteins. Many of the heat‐induced polypeptides are considered to be allergenic for sensitive individuals.


PLOS ONE | 2013

Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data

Giovanni Laidò; Giacomo Mangini; Francesca Taranto; Agata Gadaleta; Antonio Blanco; Luigi Cattivelli; Daniela Marone; Anna M. Mastrangelo; Roberto Papa; Pasquale De Vita

Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.


Frontiers in Plant Science | 2015

Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms

Davide Guerra; Cristina Crosatti; Hamid H. Khoshro; Anna M. Mastrangelo; Erica Mica; Elisabetta Mazzucotelli

Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.


Crop & Pasture Science | 2014

The colours of durum wheat: a review

Donatella Bianca Maria Ficco; Anna M. Mastrangelo; Daniela Trono; Grazia M. Borrelli; Pasquale De Vita; C. Fares; Romina Beleggia; Cristiano Platani; Roberto Papa

Abstract. Pigments are essential to the life of all living organisms. Animals and plants have been the subjects of basic and applied research with the aim of determining the basis of the accumulation and physiological roles of pigments. In crop species, the edible organs show large variations in colour. In durum wheat grain, which is a staple food for humans, the colour is mainly due to two natural classes of pigment: carotenoids and anthocyanins. The carotenoids provide the yellow pigmentation of the durum wheat endosperm, and consequently of the semolina, which has important implications for the marketing of end products based on durum wheat. Anthocyanins accumulate in the aleurone or pericarp of durum wheat and provide the blue, purple and red colours of the grain. Both the carotenoids and the anthocyanins are known to provide benefits for human health, in terms of decreased risks of certain diseases. Therefore, accumulation of these pigments in the grain represents an important trait in breeding programs aimed at improving the nutritional value of durum wheat grain and its end products. This review focuses on the biochemical and genetic bases of pigment accumulation in durum wheat grain, and on the breeding strategies aimed at modifying grain colour.

Collaboration


Dive into the Anna M. Mastrangelo's collaboration.

Top Co-Authors

Avatar

Luigi Cattivelli

Canadian Real Estate Association

View shared research outputs
Top Co-Authors

Avatar

Daniela Marone

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Laidò

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar

Maria A. Russo

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Papa

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Donatella Bianca Maria Ficco

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar

Grazia M. Borrelli

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Researchain Logo
Decentralizing Knowledge