Donatella Bianca Maria Ficco
Consiglio per la ricerca e la sperimentazione in agricoltura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donatella Bianca Maria Ficco.
Crop & Pasture Science | 2014
Donatella Bianca Maria Ficco; Anna M. Mastrangelo; Daniela Trono; Grazia M. Borrelli; Pasquale De Vita; C. Fares; Romina Beleggia; Cristiano Platani; Roberto Papa
Abstract. Pigments are essential to the life of all living organisms. Animals and plants have been the subjects of basic and applied research with the aim of determining the basis of the accumulation and physiological roles of pigments. In crop species, the edible organs show large variations in colour. In durum wheat grain, which is a staple food for humans, the colour is mainly due to two natural classes of pigment: carotenoids and anthocyanins. The carotenoids provide the yellow pigmentation of the durum wheat endosperm, and consequently of the semolina, which has important implications for the marketing of end products based on durum wheat. Anthocyanins accumulate in the aleurone or pericarp of durum wheat and provide the blue, purple and red colours of the grain. Both the carotenoids and the anthocyanins are known to provide benefits for human health, in terms of decreased risks of certain diseases. Therefore, accumulation of these pigments in the grain represents an important trait in breeding programs aimed at improving the nutritional value of durum wheat grain and its end products. This review focuses on the biochemical and genetic bases of pigment accumulation in durum wheat grain, and on the breeding strategies aimed at modifying grain colour.
Journal of Agricultural and Food Chemistry | 2013
Paola Pontieri; Gianfranco Mamone; Salvatore De Caro; Mitch R. Tuinstra; Earl Roemer; Josephine Okot; Pasquale De Vita; Donatella Bianca Maria Ficco; Pietro Alifano; Domenico Pignone; Domenica Rita Massardo; Luigi Del Giudice
Wheat (Triticum spp. L.), rye (Secale cereal L.), and barley (Hordeum vulgare L.) seeds contain peptides toxic to celiac patients. Maize (Zea mays L.) and rice (Oryza sativa L.) are distant relatives of wheat as well as sorghum (Sorghum bicolor (L.) Moench) and are known to be safe for celiacs. Both immunochemical studies and in vitro and in vivo challenge of wheat-free sorghum food products support this conclusion, although molecular evidence is missing. The goal of the present study was to provide biochemical and genetic evidence that sorghum is safe for celiac patients. In silico analysis of the recently published sorghum genome predicts that sorghum does not contain peptides that are toxic for celiac patients. Aqueous/alcohol-soluble prolamins (kafirins) from different sorghum varieties, including pure lines and hybrids, were evaluated by SDS-PAGE and HPLC analyses as well as an established enzyme-linked immunosorbent assay (ELISA) based on the R5 antibody. These analyses provide molecular evidence for the absence of toxic gliadin-like peptides in sorghum, confirming that sorghum can be definitively considered safe for consumption by people with celiac disease.
Journal of Agricultural and Food Chemistry | 2014
Donatella Bianca Maria Ficco; Vanessa De Simone; Salvatore A. Colecchia; Ivano Pecorella; Cristiano Platani; Franca Nigro; Franca Finocchiaro; Roberto Papa; Pasquale De Vita
Renewed interest in breeding for high anthocyanins in wheat (Triticum ssp.) is due to their antioxidant potential. A collection of different pigmented wheats was used to investigate the stability of anthocyanins over three crop years. The data show higher anthocyanins in blue-aleurone bread wheat (Triticum aestivum L.), followed by purple- and red-pericarp durum wheat (Triticum turgidum L. ssp. turgidum convar. durum), using cyanidin 3-O-glucoside as standard. HPLC of the anthocyanin components shows five to eight major anthocyanins for blue wheat extracts, compared to three anthocyanins for purple and red wheats. Delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, and malvidin 3-O-glucoside are predominant in blue wheat, with cyanidin 3-O-glucoside, peonidin 3-O-galactoside, and malvidin 3-O-glucoside in purple wheat. Of the total anthocyanins, 40-70% remain to be structurally identified. The findings confirm the high heritability for anthocyanins, with small genotype × year effects, which will be useful for breeding purposes, to improve the antioxidant potential of cereal-based foods.
Journal of Experimental Botany | 2015
Tania Gioia; Kerstin Nagel; Romina Beleggia; Mariagiovanna Fragasso; Donatella Bianca Maria Ficco; Roland Pieruschka; Pasquale De Vita; Fabio Fiorani; Roberto Papa
The process of domestication has led to dramatic morphological and physiological changes in crop species due to adaptation to cultivation and to the needs of farmers. To investigate the phenotypic architecture of shoot- and root-related traits and quantify the impact of primary and secondary domestication, we examined a collection of 36 wheat genotypes under optimal and nitrogen-starvation conditions. These represented three taxa that correspond to key steps in the recent evolution of tetraploid wheat (i.e. wild emmer, emmer, and durum wheat). Overall, nitrogen starvation reduced the shoot growth of all genotypes, while it induced the opposite effect on root traits, quantified using the automated phenotyping platform GROWSCREEN-Rhizo. We observed an overall increase in all of the shoot and root growth traits from wild emmer to durum wheat, while emmer was generally very similar to wild emmer but intermediate between these two subspecies. While the differences in phenotypic diversity due to the effects of primary domestication were not significant, the secondary domestication transition from emmer to durum wheat was marked by a large and significant decrease in the coefficient of additive genetic variation. In particular, this reduction was very strong under the optimal condition and less intense under nitrogen starvation. Moreover, although under the optimal condition both root and shoot traits showed significantly reduced diversity due to secondary domestication, under nitrogen starvation the reduced diversity was significant only for shoot traits. Overall, a considerable amount of phenotypic variation was observed in wild emmer and emmer, which could be exploited for the development of pre-breeding strategies.
International Journal of Molecular Sciences | 2015
Anna Maria De Leonardis; Mariagiovanna Fragasso; Romina Beleggia; Donatella Bianca Maria Ficco; Pasquale De Vita; Anna M. Mastrangelo
Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.
Journal of Plant Interactions | 2012
Maria A. Russo; Donatella Bianca Maria Ficco; Daniela Marone; Pasquale De Vita; V. Vallega; Concepcion Rubies-Autonell; Claudio Ratti; Pina Ferragonio; Valentina Giovanniello; N. Pecchioni; Luigi Cattivelli; Anna M. Mastrangelo
Abstract The genetic basis of resistance to soil-borne cereal mosaic virus (SBCMV) in the Triticum turgidum L. var. durum cv. Neodur was analyzed in this study, using a linkage mapping approach. We performed phenotypic and molecular analyses of 146 recombinant inbred lines derived from the cross Cirillo (highly susceptible)×Neodur (highly resistant). A major quantitative trait locus (QTL) that explained up to 87% of the observed variability for symptom severity was identified on the short arm of chromosome 2B, within the 40-cM interval between the markers Xwmc764 and Xgwm1128, with wPt-2106 as the peak marker. Three minor QTLs were found on chromosomes 3B and 7B. Two markers coding for resistance proteins co-segregate with the major QTL on chromosome 2B and the minor QTL on chromosome 3B, representing potential candidate genes for the two resistance loci. Microsatellite markers flanking the major QTL were evaluated on a set of 25 durum wheat genotypes that were previously characterized for SBCMV resistance. The allelic composition of the genotypes at these loci, together with pedigree data, suggests that the old Italian cultivar Cappelli provided the SBCMV-resistance determinants to durum cultivars that have been independently bred in different countries over the last century.
Frontiers in Plant Science | 2015
Giovanni Laidò; Giosuè Panio; Daniela Marone; Maria A. Russo; Donatella Bianca Maria Ficco; Valentina Giovanniello; Luigi Cattivelli; Brian J. Steffenson; Pasquale De Vita; Anna M. Mastrangelo
Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the “Ug99 lineage” are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar “Cirillo” and susceptible “Neodur.” The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.
Theoretical and Applied Genetics | 2012
Daniela Marone; Giovanni Laidò; Agata Gadaleta; Pasqualina Colasuonno; Donatella Bianca Maria Ficco; Angelica Giancaspro; Stefania L. Giove; Giosuè Panio; Maria A. Russo; Pasquale De Vita; Luigi Cattivelli; Roberto Papa; Antonio Blanco; Anna M. Mastrangelo
Molecular Genetics and Genomics | 2012
Daniela Marone; Giosuè Panio; Donatella Bianca Maria Ficco; Maria A. Russo; Pasquale De Vita; Roberto Papa; Diego Rubiales; Luigi Cattivelli; Anna M. Mastrangelo
Journal of Cereal Science | 2010
Vanessa De Simone; Virginia Menzo; Anna Maria De Leonardis; Donatella Bianca Maria Ficco; Daniela Trono; Luigi Cattivelli; Pasquale De Vita
Collaboration
Dive into the Donatella Bianca Maria Ficco's collaboration.
Consiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputs