Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Maria Anastasi is active.

Publication


Featured researches published by Anna Maria Anastasi.


British Journal of Cancer | 2003

Novel antitenascin antibody with increased tumour localisation for Pretargeted Antibody-Guided RadioImmunoTherapy (PAGRIT)

R. De Santis; Anna Maria Anastasi; Valeria D'Alessio; Angela Pelliccia; Antonio Rosi; Barbara Leoni; Ragnar Lindstedt; Fiorella Petronzelli; M Dani; Antonio Verdoliva; A. Ippolito; N Campanile; V Manfredi; A Esposito; Giovanni Cassani; Marco Chinol; Giovanni Paganelli; Paolo Carminati

The Pretargeted Antibody-Guided RadioImmunoTherapy (PAGRIT) method is based on intravenous, sequential administration of a biotinylated antibody, avidin/streptavidin and 90Y-labelled biotin. The hybridoma clone producing the monoclonal antitenascin antibody BC4, previously used for clinical applications, was found not suitable for further development because of the production of an additional, nonfunctional light chain. In order to solve this problem, the new cST2146 hybridoma clone was generated. The monoclonal antibody ST2146, produced by this hybridoma, having the same specificity as BC4 but lacking the nonfunctional light chain, was characterised. ST2146 was found able to bind human tenascin at an epitope strictly related, if not identical, to the antigenic epitope of BC4. It showed, compared to BC4, higher affinity and immunoreactivity and similar selectivity by immunohistochemistry. Biodistribution studies of biotinylated ST2146 and three other monoclonal antitenascin antibodies showed for ST2146 the highest and more specific tumour localisation in HT29-grafted nude mice. On the overall, ST2146 appears to be a good alternative to BC4 for further clinical development of PAGRIT.


BMC Cancer | 2006

Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein

Emiliano Pavoni; Michela Flego; Maria Luisa Dupuis; Stefano Barca; Fiorella Petronzelli; Anna Maria Anastasi; Valeria D'Alessio; Angela Pelliccia; Paola Vaccaro; Giorgia Monteriù; Alessandro Ascione; Rita De Santis; Franco Felici; Maurizio Cianfriglia; Olga Minenkova

BackgroundCEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration.MethodsThe human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein. Subsequently, by in vitro mutagenesis of a gene encoding for the scFv MA39, a new library was established, and new scFv antibodies with improved affinity towards the CEA cognate epitope were selected and characterized.ResultsThe scFv MA39 antibody was affinity-maturated by in vitro mutagenesis and the new scFv clone, E8, was isolated, typed for CEA family member recognition and its CEACAM1, 3 and 5 shared epitope characterized for expression in a large panel of human normal and tumor tissues and cells.ConclusionThe binding affinity of the scFv E8 is in a range for efficient, in vivo, antigen capture in tumor cells expressing a shared epitope of the CEACAM1, 3 and 5 proteins. This new immunoreagent meets all criteria for a potential anticancer compound: it is human, hence poorly or not at all immunogenic, and it binds selectively and with good affinity to the CEA epitope expressed by metastatic melanoma and colon and lung carcinomas. Furthermore, its small molecular size should provide for efficient tissue penetration, yet give rapid plasma clearance.


Cancer Biotherapy and Radiopharmaceuticals | 2010

Therapeutic use of avidin is not hampered by antiavidin antibodies in humans

Fiorella Petronzelli; Angela Pelliccia; Anna Maria Anastasi; Ragnar Lindstedt; Stefania Manganello; Liliana Ferrari; Barbara Leoni; Antonio Rosi; Valeria D'Alessio; Katia Deiana; Giovanni Paganelli; Rita De Santis

Hen egg white avidin is increasingly used in the clinic as part of multifactor treatments such as pretargeted radionuclide therapy of cancer or as an antidote of biotinylated drugs. Taking into account that naturally occurring human antiavidin antibodies (HAVA) are common in humans, the present work investigates avidin immunogenicity as part of risk/benefit evaluations. Sera from 139 oncology patients naive to avidin were confirmed to exhibit HAVA with lognormally distributed titers. HAVA were boosted after avidin treatment, with no correlation with the avidin dose or with the basal titer. No antibody-related clinical symptoms were observed in 21 HAVA-positive patients treated with avidin. In mouse models, high mouse antiavidin antibody titers, induced to simulate the worst human condition, neither reduced the biotin uptake of intratissue-injected avidin nor affected the capacity of intravenously injected avidin to clear a biotinylated drug from circulation. In both models the avidin treatment was well tolerated. Results indicate that avidin immunogenicity does not affect its safety and efficacy, thus encouraging its further use in clinical applications.


BMC Biotechnology | 2007

Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells

Emiliano Pavoni; Giorgia Monteriù; Daniela Santapaola; Fiorella Petronzelli; Anna Maria Anastasi; Angela Pelliccia; Valeria D'Alessio; Rita De Santis; Olga Minenkova

BackgroundThere is much evidence that tumor cells elicit a humoral immune response in patients. In most cases, the presence of antibodies in peripheral blood is detected only in small proportion of patients with tumors overexpressing the corresponding antigen. In the present study, we analyzed the significance of local humoral response provided by tumor-infiltrating lymphocytes in breast cancer patients.MethodsThe ability of a patients immune system to produce specific antibodies inside tumor tissue, capable of recognizing tumor cells, was explored through analysis of the oligoclonality of antibodies derived from tumor-infiltrating lymphocytes and construction of a series of recombinant antibody libraries in scFv format, derived from breast tumor-infiltrating B lymphocytes. These libraries and one from peripheral blood lymphocytes of a single breast cancer patient were panned against three purified surface tumor antigens, such as CEA, MUC1 and ED-B domain, and against intact MCF7 breast carcinoma cells.ResultsApplication of novel display vector, pKM19, allowed isolation of a large panel of breast cancer-specific antibodies against known tumor antigens, as well as against breast carcinoma cells. Reactivity of novel scFvs was confirmed by ELISA, immunohistochemistry, fluorescence staining and flow cytometry. We demonstrated that seven of ten primary breast tumor specimens, obtained using discarded surgical material, could be exploited as an appropriate source for generation of phage display libraries, giving highly specific antitumor antibodies which recognize heterologous tumor cells.ConclusionLocal humoral immune response within tumor tissue in breast cancer patients frequently has an oligoclonal character. Efficient selection of specific antitumor antibodies from recombinant antibody libraries, derived from such oligoclonal tumor-infiltrated B lymphocytes, indicates the presence of natural immune response against tumor antigens in these patients. The described method is very promising for development of antitumor antibodies, potentially useful for diagnostic and therapeutic approaches.


Clinical Cancer Research | 2005

Improved Tumor Targeting by Combined Use of Two Antitenascin Antibodies

Fiorella Petronzelli; Angela Pelliccia; Anna Maria Anastasi; Valeria D'Alessio; Antonio Rosi; Barbara Leoni; Clara De Angelis; Giovanni Paganelli; Giovanna Palombo; Maria Dani; Paolo Carminati; Rita De Santis

Purpose: In the pretargeted antibody-guided radioimmunotherapy (PAGRIT) system, the combined use of two different antibodies directed against the same tumor antigen could represent a valid approach for improving tumor targeting and therapeutic efficacy. We developed a novel monoclonal antitenascin antibody, ST2485, and studied its biochemical and functional properties by in vitro and in vivo assays. We then investigated the first of the three-step therapy combining ST2485 with another antitenascin antibody, ST2146, previously described, to increase accumulation of biotinylated antibodies at the tumor site. Experimental Design: Studies of immunoreactivity, affinity, immunohistochemistry, and biodistribution in xenograft model were carried out on ST2485. Analysis of the ST2485 and ST2146 combination was preliminary carried out by ELISA and BiaCore tests and then by in vivo distribution studies after administration of the radiolabeled biotinylated antibodies, followed by a chase with avidin as clearing agent. Results: ST2485 was found to be a suitable antibody for therapeutic applications. Indeed, for its behavior in all tests, it was comparable with ST2146 and better than BC2, an antibody already used for clinical trials. The additivity of ST2146 and ST2485 in tenascin C binding, shown by in vitro tests, was confirmed by biodistribution studies in a xenograft model where tumor localization of the antibodies was near the sum of each antibody alone, with a tumor-to-blood ratio higher than 24. Conclusion: The results reported in this study suggest that a monoclonal antitenascin antibody mixture can improve tumor targeting. This strategy could represent progress for therapeutic approaches such as PAGRIT.


Clinical Cancer Research | 2006

Low and High Tenascin-Expressing Tumors Are Efficiently Targeted by ST2146 Monoclonal Antibody

Rita De Santis; Fiorella Petronzelli; Silvia Campo; Valeria D'Alessio; Antonio Rosi; Anna Maria Anastasi; Ragnar Lindstedt; Nadia Caroni; Brunilde Arseni; Pierino Chiodi; Antonio Verdoliva; Giovanni Cassani; Marco Chinol; Giovanni Paganelli; Paolo Carminati

ST2146biot is a biotinylated anti-tenascin monoclonal antibody (mAb) to be used for Pretargeted Antibody Guided Radioimmunotherapy (PAGRIT) of solid tumors. In vivo biodistribution studies of 125I-labeled ST2146biot were done in nude mice transplanted with human HT-29 colon carcinoma and/or human U-118MG glioblastoma cells characterized for low and high tenascin expression, respectively. In vitro results show that ST2146 retains immunoreactivity upon biotinylation, in contrast to other anti-tenascin mAbs. In vivo biodistribution of ST2146 shows specific tumor accumulation up to 10 days after the i.v. injection, with no relevant differences between biotinylated and nonbiotinylated ST2146. A dose of 4 μg/mouse saturates the low tenascin-expressing human colon carcinoma HT-29, whereas the high tenascin-expressing human glioblastoma U-118MG seems to be saturated at a ST2146biot dose between 320 and 640 μg/mouse. The percentage of injected dose per gram of tumor ranges from 10% to 30%, corresponding to an amount of ST2146biot/g of tumor of ∼400 ng/g and >200 μg/g for HT-29 and U-118MG, respectively. Tumor to normal organs uptake ratios are between 15 and 60, confirming high tumor selectivity of ST2146biot despite its cross-reactivity with the tenascin expressed at low level in the normal mouse organs. The ST2146biot localization data are substantially confirmed even when both low and high tenascin-expressing tumors are implanted in the same animal. To our knowledge, the absolute amount of ST2146biot, specifically localized in xenotransplanted human tumors, is the highest thus far described and supports the clinical use of this mAb in PAGRIT®.


Journal of Biological Chemistry | 2010

Biochemical and Biological Characterization of a New Oxidized Avidin with Enhanced Tissue Binding Properties

Antonio Verdoliva; Piero Bellofiore; Vincenzo Rivieccio; Sergio Catello; Maurizio Colombo; Antonio Rosi; Barbara Leoni; Anna Maria Anastasi; Rita De Santis

Chicken avidin and bacterial streptavidin are widely employed in vitro for their capacity to bind biotin, but their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in medical treatments. Here we investigate the biochemical and biological properties of a new modified avidin, obtained by ligand-assisted sodium periodate oxidation of avidin. This method allows protection of biotin-binding sites of avidin from inactivation caused by the oxidation step and delay of avidin clearance from injected tissue by generation of aldehyde groups from avidin carbohydrate moieties. Oxidized avidin shows spectroscopic properties similar to that of native avidin, indicating that tryptophan residues are spared from oxidation damage. In strict agreement with these results, circular dichroism and isothermal titration calorimetry analyses confirm that the ligand-assisted oxidation preserves the avidin protein structure and its biotin binding capacity. In vitro cell binding and in vivo tissue residence experiments demonstrate that aldehyde groups provide oxidized avidin the property to bind cellular and interstitial protein amino groups through Schiffs base formation, resulting in a tissue half-life of 2 weeks, compared with 2 h of native avidin. In addition, the efficient uptake of the intravenously injected 111In-BiotinDOTA (ST2210) in the site previously treated with modified avidin underlines that tissue-bound oxidized avidin retains its biotin binding capacity in vivo. The results presented here indicate that oxidized avidin could be employed to create a stable artificial receptor in diseased tissues for the targeting of biotinylated therapeutics.


Molecular Immunology | 2014

Optimized selection of anti-tumor recombinant antibodies from phage libraries on intact cells.

Emiliano Pavoni; Paola Vaccaro; Anna Maria Anastasi; Olga Minenkova

Generation of human recombinant antibody libraries displayed on the surface of the filamentous phage and selection of specific antibodies against desirable targets allows production of fully human antibodies usable for repeated administration in humans. Various lymphoid tissues from immunized donors, such as lymph nodes or peripheral blood lymphocytes from individuals with tumor or lymphocytes infiltrating tumor masses may serve as a source of specific anti-tumor antibody repertoire for generation of tumor-focused phage display libraries. In the case of lack of tumor-associated antigens in the purified form, high affinity anti-tumor antibodies can be isolated through library panning on whole cells expressing these antigens. However, affinity selection against cell surface specific antigens within highly heterogeneous population of molecules is not a very efficient process that often results in the selection of unspecific antibodies or antibodies against intracellular antigens that are generally useless for targeted immunotherapy. In this work, we developed a new cell-based antibody selection protocol that, by eliminating the contamination of dead cells from the cell suspension, dramatically improves the selection frequency of anti-tumor antibodies recognizing cell surface antigens.


Basic & Clinical Pharmacology & Toxicology | 2011

Preclinical pharmacology and safety of a novel avidin derivative for tissue-targeted delivery of radiolabelled biotin.

Fiorella Petronzelli; Anna Maria Anastasi; Angela Pelliccia; Daniela Santapaola; Antonio Rosi; Barbara Leoni; Liliana Ferrari; Giovanni Paganelli; Giancarlo Gramiccioli; Daniela Pesce; Anna M. Alfano; Maria Antonietta Stasi; Rita De Santis

We recently described an oxidized avidin variant, named AvidinOX(®) , which is a product that chemically links to tissue proteins while maintaining the capacity to uptake intravenously administered biotin. Such product proved to be successful in targeting radionuclide therapy in a mouse model of inoperable breast cancer. Here, we show that the uptake of a single or multiple doses of biotin (up to five times), by the tissue-bound AvidinOX(®) , is stable for 2 weeks. Taking into account that oxidized avidin is the first chemically reactive protein to be proposed for clinical use, we evaluated its tolerability, immunogenicity and mutagenicity. Present in vitro data indicate that AvidinOX(®) (up to 10 μg/5 × 10(5) cells) does not affect cell viability or proliferation of PC3 human prostate cancer or 3T3 mouse fibroblast cell lines as well as primary mouse spleen cells. Safety pharmacology and toxicology studies were conducted using AvidinOX(®) up to the highest concentration compatible with its solubility (about 12 mg/mL), representing four times the product concentration intended for human use, and in the maximum administrable volume compatible with each study system. The intramuscular administration in rat and monkey induced a moderate to strong inflammatory response particularly after a second administration and consistently with the induction of an immune response. Interestingly, the intramuscular administration of AvidinOX(®) to rodents and monkeys exhibiting very high anti-avidin antibody titres was well tolerated with no systemic symptoms of any kind. Intravenous administration of AvidinOX(®) , performed to mimic an accidental injection of the dose intended for a local administration (15 μL of 3.3 mg/mL solution), showed significant localization of the product into the spleen not associated with uptake of the radiolabelled biotin intravenously injected after 24 hr, thus suggesting rapid inactivation. No mutagenic activity was induced by oxidized avidin in prokaryotic and eukaryotic cells. Overall, the present data indicate that AvidinOX(®) is well tolerated in rodents and non-human primates, thus supporting its clinical use within protocols of radionuclide therapy of inoperable tumour lesions.


PLOS ONE | 2011

Chemical Linkage to Injected Tissues Is a Distinctive Property of Oxidized Avidin

Rita De Santis; Anna Maria Anastasi; Angela Pelliccia; Antonio Rosi; Antonio Verdoliva; Fiorella Petronzelli; Valeria D'Alessio; Serenella Serani; Carlo Antonio Nuzzolo

We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiffs bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon. We produced oxidized ovalbumin and mannosylated streptavidin which share with avidin glycosylation pattern and tetrameric structure, respectively and found that neither of them linked significantly to cells in vitro nor to injected tissues in vivo, despite the presence of functional aldehyde groups. The study, extended to additional oxidized glycoproteins, showed that the in vivo chemical conjugation is a distinctive property of the oxidized avidin. Relevance of the high cationic charge of avidin into the stable linkage of AvidinOX to tissues is demonstrated as the oxidized acetylated avidin lost the property. Plasmon resonance on matrix proteins and cellular impedance analyses showed in vitro that avidin exhibits a peculiar interaction with proteins and cells that allows the formation of highly stable Schiffs bases, after oxidation.

Collaboration


Dive into the Anna Maria Anastasi's collaboration.

Researchain Logo
Decentralizing Knowledge