Anna Maria Fiore-Donno
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Maria Fiore-Donno.
PLOS Biology | 2012
Jan Pawlowski; Stéphane Audic; Sina Adl; David Bass; Lassaâd Belbahri; Cédric Berney; Samuel S. Bowser; Ivan Čepička; Johan Decelle; Micah Dunthorn; Anna Maria Fiore-Donno; Gillian H. Gile; Maria Holzmann; Regine Jahn; Miloslav Jirků; Patrick J. Keeling; Martin Kostka; Alexander Kudryavtsev; Enrique Lara; Julius Lukeš; David G. Mann; Edward A. D. Mitchell; Frank Nitsche; Maria Romeralo; Gary W. Saunders; Alastair G. B. Simpson; Alexey V. Smirnov; John L. Spouge; Rowena Stern; Thorsten Stoeck
A group of protist experts proposes a two-step DNA barcoding approach, comprising a universal eukaryotic pre-barcode followed by group-specific barcodes, to unveil the hidden biodiversity of microbial eukaryotes.
Molecular Phylogenetics and Evolution | 2008
Anna Maria Fiore-Donno; Marianne Meyer; Sandra L. Baldauf; Jan Pawlowski
The Myxomycetes are a major component of soil amoebae, displaying a complex life cycle that terminates in the formation of often macroscopic fruiting bodies. The classification of Myxomycetes is controversial and strongly depends on the weight given by different authors to morphological and developmental characters. We used a molecular approach to establish the phylogenetic relationships in the dark-spored orders Stemonitales and Physarales. Twenty-five small subunit ribosomal RNA gene sequences were obtained, with focus on two Stemonitales genera, Lamproderma and Comatricha. Unexpectedly, our results show that Stemonitales are paraphyletic with Physarales arising from within a Lamproderma clade. The genus Lamproderma itself is polyphyletic and can be divided into two distinct clades. Additionally, we found that Comatricha nigricapillitia comprises two cryptic species, both related to Enerthenema. Our study allows the reappraisal of morphological and developmental characters in the light of molecular data and sets foundations for a new classification of Myxomycetes.
Molecular Phylogenetics and Evolution | 2015
Thomas Cavalier-Smith; Anna Maria Fiore-Donno; Ema Chao; Alexander Kudryavtsev; Cédric Berney; Elizabeth A. Snell; Rhodri Lewis
Amoebozoa is a key phylum for eukaryote phylogeny and evolutionary history, but its phylogenetic validity has been questioned since included species are very diverse: amoebo-flagellate slime-moulds, naked and testate amoebae, and some flagellates. 18S rRNA gene trees have not firmly established its internal topology. To rectify this we sequenced cDNA libraries for seven diverse Amoebozoa and conducted phylogenetic analyses for 109 eukaryotes (17-18 Amoebozoa) using 60-188 genes. We conducted Bayesian inferences with the evolutionarily most realistic site-heterogeneous CAT-GTR-Γ model and maximum likelihood analyses. These unequivocally establish the monophyly of Amoebozoa, showing a primary dichotomy between the previously contested subphyla Lobosa and Conosa. Lobosa, the entirely non-flagellate lobose amoebae, are robustly partitioned into the monophyletic classes Tubulinea, with predominantly tube-shaped pseudopodia, and Discosea with flattened cells and different locomotion. Within Conosa 60/70-gene trees with very little missing data show a primary dichotomy between the aerobic infraphylum Semiconosia (Mycetozoa and Variosea) and secondarily anaerobic Archamoebae. These phylogenetic features are entirely congruent with the most recent major amoebozoan classification emphasising locomotion modes, pseudopodial morphology, and ultrastructure. However, 188-gene trees where proportionally more taxa have sparser gene-representation weakly place Archamoebae as sister to Macromycetozoa instead, possibly a tree reconstruction artefact of differentially missing data.
PLOS ONE | 2012
Anna Maria Fiore-Donno; Akiko Kamono; Marianne Meyer; Martin Schnittler; Manabu Fukui; Thomas Cavalier-Smith
The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (∼600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.
Scientific Reports | 2016
Anna Maria Fiore-Donno; Jan Weinert; Tesfaye Wubet; Michael Bonkowski
This study reveals the diversity and distribution of two major ubiquitous groups of soil amoebae, the genus Acanthamoeba and the Myxomycetes (plasmodial slime-moulds) that are rarely, if ever, recovered in environmental sampling studies. We analyzed 150 grassland soil samples from three Biodiversity Exploratories study regions in Germany. We developed specific primers targeting the V2 variable region in the first part of the small subunit of the ribosomal RNA gene for high-throughput pyrotag sequencing. From ca. 1 million reads, applying very stringent filtering and clustering parameters to avoid overestimation of the diversity, we obtained 273 acanthamoebal and 338 myxomycete operational taxonomic units (OTUs, 96% similarity threshold). This number is consistent with the genetic diversity known in the two investigated lineages, but unequalled to date by any environmental sampling study. Only very few OTUs were identical to already known sequences. Strikingly different OTUs assemblages were found between the three German regions (PerMANOVA p.value = 0.001) and even between sites of the same region (multiple-site Simpson-based similarity indices <0.4), showing steep biogeographical gradients.
PLOS ONE | 2013
Anna Maria Fiore-Donno; Fionn Clissmann; Marianne Meyer; Martin Schnittler; Thomas Cavalier-Smith
Myxomycetes, or plasmodial slime-moulds, are one of the largest groups in phylum Amoebozoa. Nonetheless, only ∼10% are in the database for the small subunit (SSU) ribosomal RNA gene, the most widely used gene for phylogenetics and barcoding. Most sequences belong to dark-spored Myxomycetes (order Fuscisporida); the 318 species of superorder Lucisporidia (bright-spored) are represented by only eleven genuine sequences. To compensate for this, we provide 66 new sequences, 37 SSU rRNA and 29 elongation factor 1-alpha (EF-1α), for 82% of the genera of Lucisporidia. Phylogenetic analyses of single- and two-gene alignments produce congruent topologies and reveal both morphological characters that have been overemphasised and those that have been overlooked in past classifications. Both classical orders, Liceida and Trichiida, and several families and genera are para/polyphyletic; some previously unrecognised clades emerge. We discuss possible evolutionary pathways. Our study fills a gap in the phylogeny of Amoebozoa and provides an extensive SSU rRNA sequence reference database for environmental sampling and barcoding. We report a new group I intron insertion site for Myxomycetes in one Licea.
The ISME Journal | 2014
María Rosa Aguilar; Anna Maria Fiore-Donno; Carlos Lado; Thomas Cavalier-Smith
It is often discussed whether the biogeography of free-living protists is better explained by the ‘everything is everywhere’(EiE) hypothesis, which postulates that only ecology drives their distribution, or by the alternative hypothesis of ‘moderate endemicity’ in which geographic barriers can limit their dispersal. To formally test this, it would be necessary not only to find organisms restricted to a geographical area but also to check for their presence in any other place with a similar ecology. We propose the use of environmental niche models to generate and test null EiE distributions. Here we have analysed the distribution of 18S rDNA variants (ribotypes) of the myxomycete Badhamia melanospora (belonging to the protozoan phylum Amoebozoa) using 125 specimens from 91 localities. Two geographically structured groups of ribotypes congruent with slight morphological differences in the spores can be distinguished. One group comprises all populations from Argentina and Chile, and the other is formed by populations from North America together with human-introduced populations from other parts of the world. Environmental climatic niche models constructed separately for the two groups have significant differences, but show several overlapping areas. However, only specimens from one group were found in an intensively surveyed area in South America where both niche models overlap. It can be concluded that everything is not everywhere for B. melanospora. This taxon constitutes a complex formed by at least two cryptic species that probably diverged allopatrically in North and South America.
PLOS ONE | 2011
Anna Maria Fiore-Donno; Yuri K. Novozhilov; Marianne Meyer; Martin Schnittler
Plasmodial slime molds (Myxogastria or Myxomycetes) are common and widespread unicellular organisms that are commonly assumed to have a sexual life cycle culminating with the formation of often macroscopic fruiting bodies that efficiently disseminate spores. However, laboratory studies based on mating compatibility revealed the coexistence of asexual as well as sexual strains. To test this hypothesis in natural populations, we investigated the genetic variability of two species of the genus Lamproderma. Detailed ecological relevés were carried out in 2007 and 2009 in several deep ravines in the Elbsandsteingebirge (Saxony, south-eastern Germany). Morphological characters of 93 specimens of Lamproderma were recorded and genetic analyses, based on the small subunit ribosomal gene, the internal transcribed spacer 1 and partial elongation factor 1α sequences were carried out for 52 specimens. Genetic analyses showed the existence of two major clades, each composed of several discrete lineages. Most of these lineages were composed of several identical sequences (SSU, ITS 1 and EF-1α) which is explained best by an asexual mode of reproduction. Detrended Correspondence Analysis of morphological characters revealed two morphospecies that corresponded to the two major clades, except for one genotype (Lc6), thus challenging the morphospecies concept. Genetic patterns were not related to the geographical distribution: specimens belonging to the same genotype were found in distinct ravines, suggesting effective long-distance dispersal via spores, except for the Lc6 genotype which was found only in one ravine. Implications for the morphological and biological species concept are discussed.
Journal of Eukaryotic Microbiology | 2010
Anna Maria Fiore-Donno; Akiko Kamono; Ema E. Chao; Manabu Fukui; Thomas Cavalier-Smith
ABSTRACT. The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages—amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylogenies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribosomal (SSU or 18S rRNA) gene for 50 dark‐spored (i.e. Stemonitida and Physarida) Myxogastria (including a new “Hyperamoeba”/Didymium sequence) and a ∼400‐bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae. We therefore abandon the polyphyletic and redundant genus Hyperamoeba. We discuss the implications for the ecology and evolution of Myxogastria, whose amoeboflagellates are more widespread than previous inventories supposed, being now found in freshwater and even marine environments.
Mycologia | 2009
Anna Maria Fiore-Donno; Edward F. Haskins; Jan Pawlowski; Thomas Cavalier-Smith
The enigmatic Semimorula liquescens E.F. Haskins, McGuin. & C.S. Berry has been isolated repeatedly from dried infructescences of Lythrum salicaria collected from Seattle and Kirkland, Washington. Detailed developmental, morphological and ultrastructural studies suggested that it represents a taxon within Mycetozoa, closely allied with Myxogastria (Myxomycetes) but with unique characteristics. Phylogeny based on two genes places it with confidence in family Echinosteliidae. This species differs from a typical Echinostelium in the way spores germinate and in the lack of a stalked sporophore, the latter being a secondary loss. Semimorula liquescens therefore might be a useful negative model to search for genes inducing stalk formation during sporulation.