Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Geisen is active.

Publication


Featured researches published by Stefan Geisen.


Nature Communications | 2017

Soil networks become more connected and take up more carbon as nature restoration progresses

Elly Morriën; S. Emilia Hannula; L. Basten Snoek; Nico R. Helmsing; Hans Zweers; Mattias de Hollander; Raquel Luján Soto; Marie-Lara Bouffaud; Marc Buée; W.J. Dimmers; Henk Duyts; Stefan Geisen; Mariangela Girlanda; Robert I. Griffiths; Helene Bracht Jørgensen; John Jensen; Pierre Plassart; Dirk Redecker; Rüdiger M. Schmelz; Olaf Schmidt; Bruce C. Thomson; Emilie Tisserant; Stéphane Uroz; Anne Winding; Mark J. Bailey; Michael Bonkowski; J.H. Faber; Francis Martin; Philippe Lemanceau; Wietse de Boer

Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.


The ISME Journal | 2015

Metatranscriptomic census of active protists in soils

Stefan Geisen; Alexander Tøsdal Tveit; Ian Clark; Andreas Richter; Mette M. Svenning; Michael Bonkowski; Tim Urich

The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.


Advances in Ecological Research | 2012

Distributional (in) congruence of Biodiversity-Ecosystem Functioning

Christian Mulder; Alice Boit; S. Mori; J.A. Vonk; S.D. Dyer; L. Faggiano; Stefan Geisen; Angélica L. González; M. Kaspari; Sandra Lavorel; Pablo A. Marquet; Axel G. Rossberg; R.W. Sterner; Winfried Voigt; Diana H. Wall

The majority of research on biodiversity–ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors of niche complementarity and community structures, we (1) examine how the diversity sensu lato of forest trees, freshwater fishes and soil invertebrates might support ecosystem functioning and (2) discuss the relevance of productive biota for monophyletic assemblages (taxocenes). In terrestrial ecosystems, correlating traits to abiotic factors is complicated by the appropriate choice of body-size distributions. Angiosperm and gymnosperm trees, for example, show metabolic incongruences in their respiration rates despite their pronounced macroecological scaling. Scaling heterotrophic organisms within their monophyletic assemblages seems more difficult than scaling autotrophs: in contrast to the generally observed decline of mass-specific metabolic rates with body mass within metazoans, soil organisms such as protozoans show opposite mass-specific trends. At the community level, the resource demand of metazoans shapes multitrophic interactions. Hence, population densities and their food web relationships reflect functional diversity, but the influence of biodiversity on stability and ecosystem functioning remains less clear. We focused on fishes in 18 riverine food webs, where the ratio of primary versus secondary extinctions (hereafter, ‘extinction partitioning’) summarizes the responses of fish communities to primary species loss (deletions) and its consequences. Based on extinction partitioning, our high-diversity food webs were just as (or even more) vulnerable to extinctions as low-diversity food webs. Our analysis allows us to assess consequences of the relocation or removal of fish species and to help with decision-making in sustainable river management. The study highlights that the topology of food webs (and not simply taxonomic diversity) plays a greater role in stabilizing the food web and enhancing ecological services than is currently acknowledged.


Molecular Ecology | 2015

Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa

Stefan Geisen; I. Laros; A. Vizcaíno; Michael Bonkowski; G.A. de Groot

Protists, the most diverse eukaryotes, are largely considered to be free‐living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High‐throughput sequencing (HTS) approaches now commonly replace cultivation‐based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free‐living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co‐amplification of metazoan‐associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over‐represented, while those of most amoebae and flagellates were under‐represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free‐living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co‐extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free‐living soil protist communities.


Protist | 2015

Expansion of the ‘Reticulosphere’: Diversity of Novel Branching and Network-forming Amoebae Helps to Define Variosea (Amoebozoa)

Cédric Berney; Stefan Geisen; Jeroen Van Wichelen; Frank Nitsche; Pieter Vanormelingen; Michael Bonkowski; David Bass

Amoebae able to form cytoplasmic networks or displaying a multiply branching morphology remain very poorly studied. We sequenced the small-subunit ribosomal RNA gene of 15 new amoeboid isolates, 14 of which are branching or network-forming amoebae (BNFA). Phylogenetic analyses showed that these isolates all group within the poorly-known and weakly-defined class Variosea (Amoebozoa). They are resolved into six lineages corresponding to distinct new morphotypes; we describe them as new genera Angulamoeba (type species Angulamoeba microcystivorans n. gen., n. sp.; and A. fungorum n. sp.), Arboramoeba (type species Arboramoeba reticulata n. gen., n. sp.), Darbyshirella (type species Darbyshirella terrestris n. gen., n. sp.), Dictyamoeba (type species Dictyamoeba vorax n. gen., n. sp.), Heliamoeba (type species Heliamoeba mirabilis n. gen., n. sp.), and Ischnamoeba (type species Ischnamoeba montana n. gen., n. sp.). We also isolated and sequenced four additional variosean strains, one belonging to Flamella, one related to Telaepolella tubasferens, and two members of the cavosteliid protosteloid lineage. We identified a further 104 putative variosean environmental clone sequences in GenBank, comprising up to 14 lineages that may prove to represent additional novel morphotypes. We show that BNFA are phylogenetically widespread in Variosea and morphologically very variable, both within and between lineages.


Protist | 2014

Discrepancy between species borders at morphological and molecular levels in the genus Cochliopodium (Amoebozoa, Himatismenida), with the description of Cochliopodium plurinucleolum n. sp.

Stefan Geisen; Alexander Kudryavtsev; Michael Bonkowski; Alexey V. Smirnov

Amoebae of the genus Cochliopodium are characterized by a tectum that is a layer of scales covering the dorsal surface of the cell. A combination of scale structure, morphological features and, nowadays, molecular information allows species discrimination. Here we describe a soil species Cochliopodium plurinucleolum n. sp. that besides strong genetic divergence from all currently described species of Cochliopodium differs morphologically by the presence of several peripheral nucleoli in the nucleus. Further, we unambiguously show that the Golgi attachment associated with a dictyosome in Cochliopodium is a cytoplasmic microtubule organizing center (MTOC). Last, we provide detailed morphological and molecular information on the sister clade of C. plurinucleolum, containing C. minus, C. minutoidum, C. pentatrifurcatum and C. megatetrastylus. These species share nearly identical sequences of both, small subunit ribosomal RNA and partial Cox1 genes, and nearly identical structure of the scales. Scales of C. pentatrifurcatum differ, however, strongly from scales of the others while sequences of C. pentatrifurcatum and C. minus are nearly identical. These discrepancies urge for future sampling efforts to disentangle species characteristics within Cochliopdium and to investigate morphological and molecular patterns that allow reliable species differentiation.


The ISME Journal | 2017

The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators

Kristin Schulz-Bohm; Stefan Geisen; E R Jasper Wubs; Chunxu Song; Wietse de Boer; Paolina Garbeva

Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil protists and how that relates to direct feeding interactions. We observed that most bacteria affected protist activity by VOCs. However, the response of protists to the VOCs was strongly dependent on both the bacterial and protist interacting partner. Stimulation of protist activity by volatiles and in direct trophic interaction assays often coincided, suggesting that VOCs serve as signals for protists to sense suitable prey. Furthermore, bacterial terpene synthase mutants lost the ability to affect protists, indicating that terpenes represent key components of VOC-mediated communication. Overall, we demonstrate that volatiles are directly involved in protist−bacterial predator−prey interactions.


European Journal of Protistology | 2014

Two new species of the genus Stenamoeba (Discosea, Longamoebia): cytoplasmic MTOC is present in one more amoebae lineage.

Stefan Geisen; Jan Weinert; Alexander Kudryavtsev; Anna Glotova; Michael Bonkowski; Alexey V. Smirnov

Two new species of the recently described genus Stenamoeba, named S. berchidia and S. sardiniensis were isolated from a single soil sample on Sardinia, Italy. Both share morphological features characteristic to Stenamoeba and form in phylogenetic analyses together with other Stenamoeba spp. a highly supported clade within the family Thecamoebidae. The ultrastructural investigation of Stenamoeba sardiniensis revealed the presence of cytoplasmic microtubule-organizing centers (MTOCs), located close to one of several dictyosomes found inside the cell. This is the first report of cytoplasmic MTOCs among Thecamoebidae. The presence of MTOCs is now shown in five of nine orders comprising the class Discosea and potentially could be a phylogenetic marker in this group. We re-isolated Stenamoeba limacina from German soils. This strain shows a similar morphology and an almost complete SSU rDNA sequence identity with the type strain of S. limacina originating from gills of fishes, collected in Czech Republic.


Biology Direct | 2016

Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group

Alexander K. Tice; Lora L. Shadwick; Anna Maria Fiore-Donno; Stefan Geisen; Seungho Kang; Gabriel A. Schuler; Frederick W. Spiegel; Katherine A. Wilkinson; Michael Bonkowski; Kenneth Dumack; Daniel J. G. Lahr; Eckhard Voelcker; Steffen Clauß; Junling Zhang; Matthew W. Brown

BackgroundAcanthamoebidae is a “family” level amoebozoan group composed of the genera Acanthamoeba, Protacanthamoeba, and very recently Luapeleamoeba. This clade of amoebozoans has received considerable attention from the broader scientific community as Acanthamoeba spp. represent both model organisms and human pathogens. While the classical composition of the group (Acanthamoeba + Protacanthamoeba) has been well accepted due to the morphological and ultrastructural similarities of its members, the Acanthamoebidae has never been highly statistically supported in single gene phylogenetic reconstructions of Amoebozoa either by maximum likelihood (ML) or Bayesian analyses.ResultsHere we show using a phylogenomic approach that the Acanthamoebidae is a fully supported monophyletic group within Amoebozoa with both ML and Bayesian analyses. We also expand the known range of morphological and life cycle diversity found in the Acanthamoebidae by demonstrating that the amoebozoans “Protostelium” arachisporum, Dracoamoeba jormungandri n. g. n. sp., and Vacuolamoeba acanthoformis n.g. n.sp., belong within the group. We also found that “Protostelium” pyriformis is clearly a species of Acanthamoeba making it the first reported sporocarpic member of the genus, that is, an amoeba that individually forms a walled, dormant propagule elevated by a non-cellular stalk. Our phylogenetic analyses recover a fully supported Acanthamoebidae composed of five genera. Two of these genera (Acanthamoeba and Luapeleameoba) have members that are sporocarpic.ConclusionsOur results provide high statistical support for an Acanthamoebidae that is composed of five distinct genera. This study increases the known morphological diversity of this group and shows that species of Acanthamoeba can include spore-bearing stages. This further illustrates the widespread nature of spore-bearing stages across the tree of Amoebozoa.ReviewersThis article was reviewed by Drs. Eugene Koonin, Purificacion Lopez-Garcia and Sandra Baldauf. Sandra Baldauf was nominated by Purificacion Lopez-Garcia, an Editorial Board member.


Journal of Eukaryotic Microbiology | 2017

UniEuk : Time to Speak a Common Language in Protistology!

Cédric Berney; Andreea Ciuprina; Sara J. Bender; Juliet Brodie; Virginia P. Edgcomb; Eunsoo Kim; Jeena Rajan; Laura Wegener Parfrey; Sina Adl; Stéphane Audic; David Bass; David A. Caron; Guy Cochrane; Lucas Czech; Micah Dunthorn; Stefan Geisen; Frank Oliver Glöckner; Frédéric Mahé; Christian Quast; Jonathan Z. Kaye; Alastair G. B. Simpson; Alexandros Stamatakis; Javier Campo; Pelin Yilmaz; Colomban de Vargas

Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho‐taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental ‘‐omics’ surveys suggest that protists make up most of the organismal and genetic complexity of our planets ecosystems! With the current deluge of eukaryotic meta‐omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist ‐omics age to the fragile, centuries‐old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community‐based and expert‐driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL‐EBI, ensuring its broad use and long‐term preservation as a reference taxonomy for eukaryotes.

Collaboration


Dive into the Stefan Geisen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.A. de Groot

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

I. Laros

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly S. Ramirez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Brown

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

J.H. Faber

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Bass

Centre for Environment

View shared research outputs
Researchain Logo
Decentralizing Knowledge