Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Maria Giudetti is active.

Publication


Featured researches published by Anna Maria Giudetti.


European Journal of Clinical Investigation | 2008

Alterations of hepatic ATP homeostasis and respiratory chain during development of non-alcoholic steatohepatitis in a rodent model

Gaetano Serviddio; Francesco Bellanti; Rosanna Tamborra; Tiziana Rollo; Antonino Davide Romano; Anna Maria Giudetti; Nazzareno Capitanio; Antonio Petrella; Gianluigi Vendemiale; Emanuele Altomare

Background  Mitochondrial dysfunction is considered a key player in non‐alcoholic steatohepatitis (NASH) but no data are available on the mitochondrial function and ATP homeostasis in the liver during NASH progression. In the present paper we evaluated the hepatic mitochondrial respiratory chain activity and ATP synthesis in a rodent model of NASH development.


PLOS ONE | 2011

Oxidation of Hepatic Carnitine Palmitoyl Transferase-I (CPT-I) Impairs Fatty Acid Beta-Oxidation in Rats Fed a Methionine-Choline Deficient Diet

Gaetano Serviddio; Anna Maria Giudetti; Francesco Bellanti; Paola Priore; Tiziana Rollo; Rosanna Tamborra; Luisa Siculella; Gianluigi Vendemiale; Emanuele Altomare; Gabriele V. Gnoni

There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats. We demonstrated that CPT-Iactivity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats. At the same time, the rate of total fatty acid oxidation to CO2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed.


Prostaglandins & Other Lipid Mediators | 2012

Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases

Anna Maria Giudetti; Raffaele Cagnazzo

Chronic airway inflammation is a common symptom of several diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Excessive or inappropriate immune system activity and/or failure to resolve an acute inflammation spontaneously can induce functional changes in the walls and parenchyma of the airways. Continuous recruitment of inflammatory cells to the site of inflammation and the production of protein (i.e., cytokines, chemokines, enzymes, etc.) and lipid (eicosanoids) pro-inflammatory mediators contribute directly or indirectly to changes in airway structure and function. Pro-inflammatory eicosanoids are mainly formed by the metabolism of arachidonic acid, an n-6 polyunsaturated fatty acid esterified at the s-n2 position of membrane phospholipids. Unlike n-6 polyunsaturated fatty acids (PUFA), n-3 PUFA decrease inflammation. The anti-inflammatory effect of n-3 PUFA derives from their ability to compete with arachidonic acid in the production of eicosanoids, thereby decreasing the production of pro-inflammatory cytokines and reducing immune cell functions. Moreover, n-3 PUFA can give rise to a series of pro-resolving mediators with anti-inflammatory actions, such as resolvins and protectins. While most studies have reported n-3 PUFA to have beneficial effects on chronic airway diseases, some have questioned the anti-inflammatory effects of n-3 PUFA in inflammatory airway diseases. This paper summarizes the main mechanisms by which n-3 PUFA exert anti-inflammatory and pro-resolving effects, focusing on their use in airway disorders with an inflammatory component.


PLOS ONE | 2012

A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

Alessandra Ferramosca; Annalea Conte; Lena Burri; Kjetil Berge; Francesco De Nuccio; Anna Maria Giudetti; Vincenzo Zara

Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.


Free Radical Biology and Medicine | 2011

Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration.

Gaetano Serviddio; Francesco Bellanti; Anna Maria Giudetti; Gabriele V. Gnoni; Nazzareno Capitanio; Rosanna Tamborra; Antonino Davide Romano; Maurizio Quinto; Maria Blonda; Gianluigi Vendemiale; Emanuele Altomare

The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.


Journal of Pharmacology and Experimental Therapeutics | 2010

A Silybin-Phospholipid Complex Prevents Mitochondrial Dysfunction in a Rodent Model of Nonalcoholic Steatohepatitis

Gaetano Serviddio; Francesco Bellanti; Anna Maria Giudetti; Gabriele V. Gnoni; Antonio Petrella; Rosanna Tamborra; Antonino Davide Romano; Tiziana Rollo; Gianluigi Vendemiale; Emanuele Altomare

Mitochondrial dysfunction and oxidative stress are determinant events in the pathogenesis of nonalcoholic steatohepatitis. Silybin has shown antioxidant, anti-inflammatory, and antifibrotic effects in chronic liver disease. We aimed to study the effect of the silybin-phospholipid complex (SILIPHOS) on liver redox balance and mitochondrial function in a dietary model of nonalcoholic steatohepatitis. To accomplish this, glutathione oxidation, mitochondrial oxygen uptake, proton leak, ATP homeostasis, and H2O2 production rate were evaluated in isolated liver mitochondria from rats fed a methionine- and choline-deficient (MCD) diet and the MCD diet plus SILIPHOS for 7 and 14 weeks. Oxidative proteins, hydroxynonenal (HNE)- and malondialdehyde (MDA)-protein adducts, and mitochondrial membrane lipid composition were also measured. Treatment with SILIPHOS limited glutathione depletion and mitochondrial H2O2 production. Moreover, SILIPHOS preserved mitochondrial bioenergetics and prevented mitochondrial proton leak and ATP reduction. Finally, SILIPHOS limited the formation of HNE- and MDA-protein adducts. In conclusion, SILIPHOS is effective in preventing severe oxidative stress and preserving hepatic mitochondrial bioenergetics in nonalcoholic steatohepatitis induced by the MCD diet. The modifications of mitochondrial membrane fatty acid composition induced by the MCD diet are partially prevented by SILIPHOS, conferring anti-inflammatory and antifibrotic effects. The increased vulnerability of lipid membranes to oxidative damage is limited by SILIPHOS through preserved mitochondrial function.


FEBS Letters | 2004

Different dietary fatty acids have dissimilar effects on activity and gene expression of mitochondrial tricarboxylate carrier in rat liver

Luisa Siculella; Simona Sabetta; Fabrizio Damiano; Anna Maria Giudetti; Gabriele V. Gnoni

The tricarboxylate carrier (TCC), an integral protein of the mitochondrial inner membrane, transports mitochondrial acetyl‐CoA into the cytosol, where lipogenesis occurs. We investigated in rat liver mitochondria the effect of diets enriched with saturated fatty acids (beef tallow, BT), monounsaturated fatty acids (olive oil, OO) or n − 3 polyunsaturated fatty acids (fish oil, FO), respectively, on the activity and expression of TCC. TCC activity decreased, in parallel with TCC mRNA abundance, only upon FO‐feeding. The TCC transcription rate, mRNA turnover and RNA processing indicated that FO administration regulates TCC gene at transcriptional and post‐transcriptional steps, whereas BT‐ and OO‐feeding do not seem to affect either TCC activity or gene expression.


Free Radical Biology and Medicine | 2014

Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis.

Gaetano Serviddio; Francesco Bellanti; Eleonora Stanca; Paola Lunetti; Maria Blonda; Rosanna Tamborra; Luisa Siculella; Gianluigi Vendemiale; Loredana Capobianco; Anna Maria Giudetti

The accumulation of toxic hydrophobic bile acids in hepatocytes, observed during chronic cholestasis, induces substantial modification in the redox state and in mitochondrial functions. Recent reports have suggested a significant role of impaired lipid metabolism in the progression of chronic cholestasis. In this work we report that changes observed in the expression of the lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthase were associated with a decrease in the activity of citrate carrier (CIC), a protein of the inner mitochondrial membrane closely related to hepatic lipogenesis. We also verified that the impairment of citrate transport was dependent on modification of the phospholipid composition of the mitochondrial membrane and on cardiolipin oxidation. Silybin, an extract of silymarin with antioxidant and anti-inflammatory properties, prevented mitochondrial reactive oxygen species (ROS) production, cardiolipin oxidation, and CIC failure in cirrhotic livers but did not affect the expression of lipogenic enzymes. Moreover, supplementation of silybin was also associated with mitochondrial biogenesis. In conclusion, we demonstrate that chronic cholestasis induces cardiolipin oxidation that in turn impairs mitochondrial function and further promotes ROS production. The capacity of silybin to limit mitochondrial failure is part of its hepatoprotective property.


British Journal of Nutrition | 2003

Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1 cis and C18:1 trans isomers.

Anna Maria Giudetti; Anton C. Beynen; A. G. Lemmens; Gabriele V. Gnoni; Math J.H. Geelen

In the present study the effects of some C18 fatty acids on hepatic fatty acid metabolism have been compared. Male rats were fed cholesterol-free diets containing either C18:0, C18:1 cis or C18:1 trans isomers as the variables. In accordance with previous work, oleic acid in the diet caused an increase in cholesterol concentration in the liver and in the lipoprotein fraction of density (d; kg/l) < 1.006. Oleic acid also reduced the triacylglycerol:cholesterol value in this fraction. Surprisingly, the C18:1 trans isomers diet induced a decrease in the amount of cholesterol in total plasma as well as in the 1.019 < d < 1.063 lipoprotein fraction. Both oleic acid and C18:1 trans isomers increased the concentration of triacylglycerols in the liver. The two C18:1 fatty acids differently influenced the hepatic activities of carnitine palmitoyltransferase-I and 3-hydroxy-acyl-CoA dehydrogenase; both enzymes were inhibited by C18:1 trans isomers, while no change was induced by oleic acid. The activity of the citrate carrier was lower in the oleic acid- and C18:1 trans isomers-fed rats, when compared with the rats fed stearic acid. No diet effects were seen for the activities of acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, citrate synthase and phosphofructokinase. The results are interpreted in that oleic acid raised liver triacylglycerol by reducing the secretion of it with the d < 1.006 lipoprotein fraction whereas the C18:1 trans isomers enhanced liver triacylglycerol by lowering the hepatic oxidation of fatty acids.


Biochemical and Biophysical Research Communications | 2002

Starvation-induced posttranscriptional control of rat liver mitochondrial citrate carrier expression

Luisa Siculella; Simona Sabetta; Roberta di Summa; Monica Leo; Anna Maria Giudetti; Ferdinando Palmieri; Gabriele V. Gnoni

Starvation has been associated with a reduced citrate carrier (CTP) activity in rat liver mitochondria. In the present study the molecular mechanism responsible for this reduction was investigated. Northern blot analysis performed with hepatic total RNA showed a decrease of about 40% in the CTP mRNA abundance in starved rats, when compared to fed animals. Nuclear run-on assay did not reveal any appreciable difference in the rate of CTP mRNA synthesis between the two groups of animals, while the apparent half-life of CTP mRNA in hepatocytes from fed and starved rats was 11 and 6h, respectively. Therefore, these results suggest that in starved rats the regulation of hepatic CTP expression occurs at posttranscriptional level. Moreover, the reduced CTP activity in starved animals gradually increased by refeeding. The carrier activity reached fed rat values 6-9h following refeeding. Interestingly, the accumulation of CTP mRNA raised in parallel with the transport activity.

Collaboration


Dive into the Anna Maria Giudetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adele Romano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge