Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Bellanti is active.

Publication


Featured researches published by Francesco Bellanti.


Gut | 2008

Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia–reperfusion injury

Gaetano Serviddio; Francesco Bellanti; Rosanna Tamborra; Tiziana Rollo; Nazzareno Capitanio; Antonino Davide Romano; Juan Sastre; Gianluigi Vendemiale; Emanuele Altomare

Background: The mechanisms of progression from fatty liver to steatohepatitis and cirrhosis are not well elucidated. Mitochondrial dysfunction represents a key factor in the progression of non-alcoholic steatohepatitis (NASH) as mitochondria are the main cellular site of fatty acid oxidation, ATP synthesis and reactive oxygen species (ROS) production. Aims: (1) To evaluate the role of the uncoupling protein 2 in controlling mitochondrial proton leak and ROS production in NASH rats and humans; and (2) to assess the acute liver damage induced by ischaemia–reperfusion in rats with NASH. Methods: Mitochondria were extracted from the livers of NASH humans and rats fed a methionine and choline deficient diet. Proton leak, H2O2 synthesis, reduced glutathione/oxidised glutathione, 4-hydroxy-2-nonenal (HNE)–protein adducts, uncoupling protein-2 (UCP2) expression and ATP homeostasis were evaluated before and after ischaemia–reperfusion injury. Results: NASH mitochondria exhibited an increased rate of proton leak due to upregulation of UCP2. These results correlated with increased production of mitochondrial hydrogen peroxide and HNE–protein adducts, and decreased hepatic ATP content that was not dependent on mitochondrial ATPase dysfunction. The application of an ischaemia–reperfusion protocol to these livers strongly depleted hepatic ATP stores, significantly increased mitochondrial ROS production and impaired ATPase activity. Livers from patients with NASH exhibited UCP2 over-expression and mitochondrial oxidative stress. Conclusions: Upregulation of UCP2 in human and rat NASH liver induces mitochondrial uncoupling, lowers the redox pressure on the mitochondrial respiratory chain and acts as a protective mechanism against damage progression but compromises the liver capacity to respond to additional acute energy demands, such as ischaemia–reperfusion. These findings suggest that UCP2-dependent mitochondria uncoupling is an important factor underlying events leading to NASH and cirrhosis.


Free Radical Biology and Medicine | 2013

Free radical biology for medicine: learning from nonalcoholic fatty liver disease

Gaetano Serviddio; Francesco Bellanti; Gianluigi Vendemiale

Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.


European Journal of Clinical Investigation | 2008

Alterations of hepatic ATP homeostasis and respiratory chain during development of non-alcoholic steatohepatitis in a rodent model

Gaetano Serviddio; Francesco Bellanti; Rosanna Tamborra; Tiziana Rollo; Antonino Davide Romano; Anna Maria Giudetti; Nazzareno Capitanio; Antonio Petrella; Gianluigi Vendemiale; Emanuele Altomare

Background  Mitochondrial dysfunction is considered a key player in non‐alcoholic steatohepatitis (NASH) but no data are available on the mitochondrial function and ATP homeostasis in the liver during NASH progression. In the present paper we evaluated the hepatic mitochondrial respiratory chain activity and ATP synthesis in a rodent model of NASH development.


Current Medicinal Chemistry | 2010

Targeting mitochondria: a new promising approach for the treatment of liver diseases.

Gaetano Serviddio; Francesco Bellanti; Juan Sastre; Gianluigi Vendemiale; Emanuele Altomare

Mitochondrial dysfunction acts as a common pathogenetic mechanism in several acute and chronic liver diseases, such as Alcoholic and Non-Alcoholic Fatty Liver Disease (NAFLD), drug-induced steatohepatitis, viral hepatitis, biliary cirrhosis, hepatocellular carcinoma, ischemia/reperfusion injury and transplant rejection. In particular mitochondrial uncoupling,has been recently identified to play a determinant role in the pathogenesis of liver diseases by causing decrease of mitochondrial proton motive force and ATP depletion. Damaged mitochondria present defects in lipid homeostasis, bioenergetics impairment and overproduction of Reactive Oxygen Species (ROS), leading to lipid accumulation and oxidative stress. Dysfunctional and/or uncoupled mitochondria enhance the susceptibility of hepatocytes to cell death by necrosis, via ATP depletion, or by apoptosis, via membrane permeabilization. Thus, prevention of mitochondrial alterations promises to be an effective strategy for treatment of liver diseases. However, no therapy has proven to be absolutely effective, whereas those that are beneficial present several side effects. The present review summarizes the recent approaches in mitochondrial drug deliver systems and focuses on mitochondria-targeted molecules application in liver disease. New selective molecules and nanocarriers technology are also considered as potentially effective in the targeting of mitochondrial dysfunction in liver pathology.


Expert Review of Gastroenterology & Hepatology | 2011

Mitochondrial dysfunction in nonalcoholic steatohepatitis

Gaetano Serviddio; Francesco Bellanti; Gianluigi Vendemiale; Emanuele Altomare

The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly understood and the mechanisms are still being elucidated. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of free radicals that in turn trigger lipid peroxidation and cell death. In this article, we review the role of mitochondria in fat metabolism, energy homeostasis and reactive oxygen species production, with a focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. The potential effects of some molecules targeted to mitochondria are also discussed.


PLOS ONE | 2011

Oxidation of Hepatic Carnitine Palmitoyl Transferase-I (CPT-I) Impairs Fatty Acid Beta-Oxidation in Rats Fed a Methionine-Choline Deficient Diet

Gaetano Serviddio; Anna Maria Giudetti; Francesco Bellanti; Paola Priore; Tiziana Rollo; Rosanna Tamborra; Luisa Siculella; Gianluigi Vendemiale; Emanuele Altomare; Gabriele V. Gnoni

There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats. We demonstrated that CPT-Iactivity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats. At the same time, the rate of total fatty acid oxidation to CO2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed.


Redox biology | 2013

Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy

Francesco Bellanti; Maria Matteo; Tiziana Rollo; Filomena de Rosario; Pantaleo Greco; Gianluigi Vendemiale; Gaetano Serviddio

Objective Ovarian senescence affects many tissues and produces a variety of symptoms and signs. We hypothesized that estrogens may also influence circulating redox balance by regulating activity of the cellular antioxidative enzyme system. We aimed to explore the impact of surgical estrogen deprivation and replacement (ERT) on the glutathione balance and antioxidant enzymes expression in fertile women. Study design Nineteen healthy premenopausal women who underwent total hysterectomy with bilateral salpingo-oophorectomy were evaluated at baseline, 30 days after surgery without ERT and 30 days after ERT. Redox balance was determined by measuring blood reduced (GSH) and oxidized (GSSG) glutathione, as well as the GSSG/GSH ratio. Antioxidant status was evaluated by measuring serum estrogen (E2) levels and mRNA expression of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) in peripheral blood mononuclear cells. Results Serum E2 significantly lowered after surgery, and increased in 12 out of 19 patients after 30 days of ERT (Responders). In such patients, an increase in oxidative stress was observed after surgery that resolved after ERT. Oxidative stress was sustained by reduction in the mRNA expression of both SOD and GSH-Px, that recovered after 30 days of therapy in responders. CAT and GST mRNA expression were not modified by surgery and replacement therapy. Conclusions Menopause is associated with significant change in antioxidant gene expression that in turn affects circulating redox state. Estrogens replacement therapy is able to prevent and counteract such modifications by acting as regulators of key antioxidant gene expression. These findings suggest that antioxidant genes are, almost in part, under the control of sex hormones, and that pathophysiology of the difference in gender disease may depend on the redox biology.


Neurobiology of Aging | 2012

Glutamatergic alterations and mitochondrial impairment in a murine model of Alzheimer disease

Tommaso Cassano; Gaetano Serviddio; Silvana Gaetani; Adele Romano; Pasqua Dipasquale; Silvia Cianci; Francesco Bellanti; Leonardo Laconca; Antonino Davide Romano; Iolanda Padalino; Frank M. LaFerla; Ferdinando Nicoletti; Vincenzo Cuomo; Gianluigi Vendemiale

Deficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimers disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas. Cortical glutamate release responded to K(+) stimulation, whereas no peak release was observed in the HIPP of mutant mice. Synaptosomal-associated protein 25 (SNAP-25), glutamate/aspartate transporter (GLAST), glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1) were reduced in HIPP homogenates, where the adenosine triphosphate (ATP) content was lower. In contrast, glutamate transporter 1 and glial fibrillary acidic protein (GFAP) were found to be higher in the frontal cortex. The respiration rates of complex-I, II, IV, and the membrane potential were reduced in cortical mitochondria, where unaltered proton leak, F(0)F(1)-ATPase activity and ATP content, with increased hydrogen peroxide production (H(2)O(2)), were also observed. In contrast, complex-I respiration rate was significantly increased in hippocampal mitochondria, together with increased proton leak and H(2)O(2) production. Moreover, loss of complex-IV and F(0)F(1)-ATPase activities were observed. These data suggest that impairments of mitochondrial bioenergetics might sustain the failure in the energy-requiring glutamatergic transmission.


International Journal of Immunopathology and Pharmacology | 2009

Frailty syndrome is associated with altered circulating redox balance and increased markers of oxidative stress.

Gaetano Serviddio; Adele Romano; Antonio Greco; Tiziana Rollo; Francesco Bellanti; Emanuele Altomare; Gianluigi Vendemiale

Frailty Syndrome (FS) is a condition described in aging and characterized by physical vulnerability to stress and lack of physiological reserve. In this study we aim to define whether circulating oxidative stress correlates to frailty in terms of glutathione balance and oxidative protein damage. In 62 elderly outpatients, classified as frail patients according to Frieds criteria, evaluation of reduced Glutathione (GSH), Oxidized Glutathione (GSSG), Tumor Necrosis Factor-α (TNF-α), Malonaldehyde- (MDA) and 4-hydroxy-2,3-nonenal- (HNE) protein plasma adducts were performed. A significant increase in the GSSG was observed in patients with FS when compared to non-frail. No difference was shown in the GSH amount, suggesting a glutathione oxidation more than impairment of the synthesis. TNF-α, MDA- and HNE- adducts, were significantly higher in FS as compared to non-frail patients. A logistic regression model correlating FS with redox balance showed a close relationship between glutathione ratio (OR= 1.8, 95% CI=1.2–2.5) and MDA adducts (OR= 2.8, 95% CI= 1.6–4.7) to frailty. Our findings show an association between oxidative imbalance and Frailty Syndrome. GSSG/GSH ratio and plasma protein adducts strongly predict the frailty conditions and seem to be reliable and easily measurable markers in the context of the multidimensional analysis of elderly patients.


Free Radical Biology and Medicine | 2011

Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration.

Gaetano Serviddio; Francesco Bellanti; Anna Maria Giudetti; Gabriele V. Gnoni; Nazzareno Capitanio; Rosanna Tamborra; Antonino Davide Romano; Maurizio Quinto; Maria Blonda; Gianluigi Vendemiale; Emanuele Altomare

The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.

Collaboration


Dive into the Francesco Bellanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge