Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna N. Ilinskaya is active.

Publication


Featured researches published by Anna N. Ilinskaya.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Nanoparticles and the blood coagulation system. Part II: safety concerns

Anna N. Ilinskaya; Marina A. Dobrovolskaia

Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology

Anna N. Ilinskaya; Marina A. Dobrovolskaia

Nanotechnology is proven to provide certain benefits in drug delivery by improving solubility, increasing uptake to target sites and changing pharmacokinetics profiles of traditional drugs. Since properties of many materials change tremendously at the nanoscale levels, nanotechnology is also being explored in various industrial applications. As such, nanoparticles are rapidly entering various areas of industry, biology and medicine. The benefits of using nanotechnology for industrial and biomedical applications are often tempered by concerns about the safety of these new materials. One such area of concern includes their effect on the immune system. While nanoparticle interactions with various constituents of the immune system have been reviewed before, little attention was given to nanoparticle effects on the blood coagulation system. Nanoparticle interface with the blood coagulation system may lead to either benefits to the host or adverse reactions. This article reviews recent advances in our understanding of nanoparticle interactions with plasma coagulation factors, platelets, endothelial cells and leukocytes. Part I is focused on desirable interactions between nanoparticles and the coagulation system, and discusses benefits of using nanotechnology to intervene in coagulation disorders. Undesirable interactions posing safety concerns are covered in part II, which will be published in the June issue of Nanomedicine.


Toxicology and Applied Pharmacology | 2016

Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.

Anna N. Ilinskaya; Marina A. Dobrovolskaia

Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in the current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Inhibition of phosphoinositol 3 kinase contributes to nanoparticle-mediated exaggeration of endotoxin-induced leukocyte procoagulant activity

Anna N. Ilinskaya; Sonny Man; Anil K. Patri; Jeffrey D. Clogston; Rachael M. Crist; Raul E. Cachau; Scott E. McNeil; Marina A. Dobrovolskaia

AIM Disseminated intravascular coagulation is an increasing concern for certain types of engineered nanomaterials. Recent studies have shed some light on the nanoparticle physicochemical properties contributing to this toxicity; however, the mechanisms are poorly understood. Leukocyte procoagulant activity (PCA) is a key factor contributing to the initiation of this toxicity. We have previously reported on the exaggeration of endotoxin-induced PCA by cationic dendrimers. Herein, we report an effort to discern the mechanism. MATERIALS & METHODS Poly(amidoamine) dendrimers with various sizes and surface functionalities were studied in vitro by the recalcification test, flow cytometry and other relevant assays. RESULTS & CONCLUSION Cationic dendrimers exaggerated endotoxin-induced PCA, but their anionic or neutral counterparts did not; the cationic charge prompts this phenomenon, but different cationic surface chemistries do not influence it. Cationic dendrimers and endotoxin differentially affect the PCA complex. The inhibition of phosphoinositol 3 kinase by dendrimers contributes to the exaggeration of the endotoxin-induced PCA.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Induction of oxidative stress by Taxol® vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA

Anna N. Ilinskaya; Jeffrey D. Clogston; Scott E. McNeil; Marina A. Dobrovolskaia

UNLABELLED Understanding the ability of cytotoxic oncology drugs, and their carriers and formulation excipients, to induce pro-inflammatory responses is important for establishing safe and efficacious formulations. Literature data about cytokine response induction by the traditional formulation of paclitaxel, Taxol®, are controversial, and no data are available about the pro-inflammatory profile of the nano-albumin formulation of this drug, Abraxane®. Herein, we demonstrate and explain the difference in the cytokine induction profile between Taxol® and Abraxane®, and describe a novel mechanism of cytokine induction by a nanosized excipient, Cremophor EL, which is not unique to Taxol® and is commonly used in the pharmaceutical industry for delivery of a wide variety of small molecular drugs. FROM THE CLINICAL EDITOR Advances in nanotechnology have enabled the production of many nano-formulation drugs. The cellular response to drugs has been reported to be different between traditional and nano-formulations. In this article, the authors investigated and compared cytokine response induction profiles between Taxol® and Abraxane®. The findings here provided further understanding to create drugs with better safety profiles.


Archive | 2016

Interaction Between Nanoparticles and Plasma Proteins: Effects on Nanoparticle Biodistribution and Toxicity

Anna N. Ilinskaya; Marina A. Dobrovolskaia

Nanoparticles are increasingly used in biomedical applications as active pharmaceutical ingredients, drug carriers, or medical devices. Nanoparticles interaction with plasma proteins may influence their biodistribution by promoting interaction with and uptake by the circulating and tissue resident phagocytes. Biodistribution to off intended target-sites may lead to decrease in therapeutic efficacy and result in undesirable toxicities. Therefore understanding nanoparticle physicochemical properties, which determine protein binding, and consequences of protein corona on nanoparticle biodistribution and toxicity are important elements of the preclinical development of nanomedicines and nanoparticle-based medical devices. The focus of this chapter is to discuss the most recent data on nanoparticle interactions with blood components and how particle size and surface charge define their compatibility with the immune system.


Archive | 2018

Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties

Barry W. Neun; Anna N. Ilinskaya; Marina A. Dobrovolskaia

Hemolysis is damage to red blood cells (RBCs), which results in the release of the iron-containing protein hemoglobin into plasma. An in vitro assay was developed and described earlier for the analysis of nanoparticle hemolytic properties. Herein, we present a revised version of the original protocol. In this protocol, analyte nanoparticles and controls are incubated in blood. Undamaged RBCs are removed by centrifugation and hemoglobin, released by the damaged erythrocytes, is converted to cyanmethemoglobin by incubation with Drabkins reagent. The amount of cyanmethemoglobin in the supernatant is measured by spectrophotometry. This measured absorbance is compared to a standard curve to determine the concentration of hemoglobin in the supernatant. The measured hemoglobin concentration is then compared to the total hemoglobin concentration to obtain the percentage of nanoparticle-induced hemolysis. The revision includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, updated details about assay controls and case studies about nanoparticle interference with the in vitro hemolysis assay.


Archive | 2018

In Vitro Assessment of Nanoparticle Effects on Blood Coagulation

Timothy M. Potter; Jamie C. Rodriguez; Barry W. Neun; Anna N. Ilinskaya; Edward Cedrone; Marina A. Dobrovolskaia

Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterials likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.


Archive | 2018

Analysis of Complement Activation by Nanoparticles

Barry W. Neun; Anna N. Ilinskaya; Marina A. Dobrovolskaia

The complement system is a group of proteins, which function in plasma to assist the innate immunity in rapid clearance of pathogens. The complement system also contributes to coordination of the adaptive immune response. Complement Activation Related Pseudo Allergy or CARPA is a life-threatening condition commonly reported with certain types of drugs and nanotechnology-based combination products. While CARPA symptoms are similar to that of anaphylaxis, the mechanism behind this pathology does not involve IgE and is mediated by the complement system. In vitro assays using serum or plasma derived from healthy donor volunteers correlate with the in vivo complement-mediated reactions, and therefore are helpful in understanding the propensity of a given drug formulation to cause CARPA in patients. In the first edition of this book, we have described an in vitro method for qualitative assessment of the complement activation by nanomaterials using western blotting. Herein, we present a similar method utilizing enzyme-linked immunoassay for quantitative analysis of the complement activation, and we compare the performance of this approach to that of the qualitative western blotting technique. The revised chapter also includes new details about nanoparticle sample preparation.


Archive | 2018

In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells

Timothy M. Potter; Sarah L. Skoczen; Jamie C. Rodriguez; Barry W. Neun; Anna N. Ilinskaya; Edward Cedrone; Marina A. Dobrovolskaia

This chapter provides a protocol for analysis of nanoparticle effects on the function of phagocytic cells. The protocol relies on luminol chemiluminescence to detect zymosan uptake. Zymosan is an yeast particle which is typically eliminated by phagocytic cells via the complement receptor pathway. The luminol, co-internalized with zymosan, is processed inside the phagosome to generate a chemiluminescent signal. If a test nanoparticle affects the phagocytic function of the cell, the amount of phagocytosed zymosan and, proportionally, the level of generated chemiluminescent signal change. Comparing the zymosan uptake of untreated cells with that of cells exposed to a nanoparticle provides information about the nanoparticles effects on the normal phagocytic function. This method has been described previously and is presented herein with several changes. The revised method includes details about nanoparticle concentration selection, updated experimental procedure, and examples of the method performance.

Collaboration


Dive into the Anna N. Ilinskaya's collaboration.

Top Co-Authors

Avatar

Marina A. Dobrovolskaia

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Scott E. McNeil

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachael M. Crist

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge