Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry W. Neun is active.

Publication


Featured researches published by Barry W. Neun.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Protein Corona Composition Does Not Accurately Predict Hematocompatibility of Colloidal Gold Nanoparticles

Marina A. Dobrovolskaia; Barry W. Neun; Sonny Man; Xiaoying Ye; Matthew N. Hansen; Anil K. Patri; Rachael M. Crist; Scott E. McNeil

Proteins bound to nanoparticle surfaces are known to affect particle clearance by influencing immune cell uptake and distribution to the organs of the mononuclear phagocytic system. The composition of the protein corona has been described for several types of nanomaterials, but the role of the corona in nanoparticle biocompatibility is not well established. In this study we investigate the role of nanoparticle surface properties (PEGylation) and incubation times on the protein coronas of colloidal gold nanoparticles. While neither incubation time nor PEG molecular weight affected the specific proteins in the protein corona, the total amount of protein binding was governed by the molecular weight of PEG coating. Furthermore, the composition of the protein corona did not correlate with nanoparticle hematocompatibility. Specialized hematological tests should be used to deduce nanoparticle hematotoxicity. From the clinical editor: It is overall unclear how the protein corona associated with colloidal gold nanoparticles may influence hematotoxicity. This study warns that PEGylation itself may be insufficient, because composition of the protein corona does not directly correlate with nanoparticle hematocompatibility. The authors suggest that specialized hematological tests must be used to deduce nanoparticle hematotoxicity.


Archive | 2018

Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations

Barry W. Neun; Marina A. Dobrovolskaia

Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.


Archive | 2018

Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties

Barry W. Neun; Anna N. Ilinskaya; Marina A. Dobrovolskaia

Hemolysis is damage to red blood cells (RBCs), which results in the release of the iron-containing protein hemoglobin into plasma. An in vitro assay was developed and described earlier for the analysis of nanoparticle hemolytic properties. Herein, we present a revised version of the original protocol. In this protocol, analyte nanoparticles and controls are incubated in blood. Undamaged RBCs are removed by centrifugation and hemoglobin, released by the damaged erythrocytes, is converted to cyanmethemoglobin by incubation with Drabkins reagent. The amount of cyanmethemoglobin in the supernatant is measured by spectrophotometry. This measured absorbance is compared to a standard curve to determine the concentration of hemoglobin in the supernatant. The measured hemoglobin concentration is then compared to the total hemoglobin concentration to obtain the percentage of nanoparticle-induced hemolysis. The revision includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, updated details about assay controls and case studies about nanoparticle interference with the in vitro hemolysis assay.


Archive | 2018

In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions

Timothy M. Potter; Barry W. Neun; Marina A. Dobrovolskaia

Delayed-type hypersensitivity (DTH) reactions are among the common reasons for drug withdrawal from clinical use during the post-marketing stage. Several in vivo methods have been developed to test DTH responses in animal models. They include the local lymph node assay (LLNA) and local lymph node proliferation assay (LLNP). While LLNA is instrumental in testing topically administered formulations (e.g., creams), the LLNP was proven to be predictive of drug-mediated DTH in response to small molecule pharmaceuticals. Global efforts in reducing the use of research animals lead to the development of in vitro models to predict test-material-mediated DTH. Two such models include analysis of surface marker expression in human cell lines THP-1 and U-937. These tests are known as the human cell line activation test (hCLAT) and myeloid U937 skin sensitization test (MUSST or U-SENS), respectively. Here we describe experimental procedures for all these methods, discuss their in vitro-in vivo correlation, and suggest a strategy for applying these tests to analyze engineered nanomaterials and nanotechnology-formulated drug products.


Archive | 2018

In Vitro Assessment of Nanoparticle Effects on Blood Coagulation

Timothy M. Potter; Jamie C. Rodriguez; Barry W. Neun; Anna N. Ilinskaya; Edward Cedrone; Marina A. Dobrovolskaia

Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterials likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.


Archive | 2018

Analysis of Complement Activation by Nanoparticles

Barry W. Neun; Anna N. Ilinskaya; Marina A. Dobrovolskaia

The complement system is a group of proteins, which function in plasma to assist the innate immunity in rapid clearance of pathogens. The complement system also contributes to coordination of the adaptive immune response. Complement Activation Related Pseudo Allergy or CARPA is a life-threatening condition commonly reported with certain types of drugs and nanotechnology-based combination products. While CARPA symptoms are similar to that of anaphylaxis, the mechanism behind this pathology does not involve IgE and is mediated by the complement system. In vitro assays using serum or plasma derived from healthy donor volunteers correlate with the in vivo complement-mediated reactions, and therefore are helpful in understanding the propensity of a given drug formulation to cause CARPA in patients. In the first edition of this book, we have described an in vitro method for qualitative assessment of the complement activation by nanomaterials using western blotting. Herein, we present a similar method utilizing enzyme-linked immunoassay for quantitative analysis of the complement activation, and we compare the performance of this approach to that of the qualitative western blotting technique. The revised chapter also includes new details about nanoparticle sample preparation.


Archive | 2018

In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells

Timothy M. Potter; Sarah L. Skoczen; Jamie C. Rodriguez; Barry W. Neun; Anna N. Ilinskaya; Edward Cedrone; Marina A. Dobrovolskaia

This chapter provides a protocol for analysis of nanoparticle effects on the function of phagocytic cells. The protocol relies on luminol chemiluminescence to detect zymosan uptake. Zymosan is an yeast particle which is typically eliminated by phagocytic cells via the complement receptor pathway. The luminol, co-internalized with zymosan, is processed inside the phagosome to generate a chemiluminescent signal. If a test nanoparticle affects the phagocytic function of the cell, the amount of phagocytosed zymosan and, proportionally, the level of generated chemiluminescent signal change. Comparing the zymosan uptake of untreated cells with that of cells exposed to a nanoparticle provides information about the nanoparticles effects on the normal phagocytic function. This method has been described previously and is presented herein with several changes. The revised method includes details about nanoparticle concentration selection, updated experimental procedure, and examples of the method performance.


Archive | 2018

Analysis of Nanoparticle-Adjuvant Properties In Vivo

Barry W. Neun; Marina A. Dobrovolskaia

Nanoparticles can be engineered for targeted antigen delivery to the immune cells and for stimulating the immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, their additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here, we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.


Archive | 2018

Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo

Timothy M. Potter; Barry W. Neun; Marina A. Dobrovolskaia


Archive | 2018

Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles

Timothy M. Potter; Barry W. Neun; Jamie C. Rodriguez; Anna N. Ilinskaya; Marina A. Dobrovolskaia

Researchain Logo
Decentralizing Knowledge