Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Noble is active.

Publication


Featured researches published by Anna Noble.


Development | 2011

pTransgenesis:a cross-species, modular transgenesis resource

Nick R. Love; Raphaël Thuret; Yaoyao Chen; Shoko Ishibashi; Nitin Sabherwal; Roberto Paredes; Juliana Alves-Silva; Karel Dorey; Anna Noble; Matthew Guille; Yoshiki Sasai; Nancy Papalopulu; Enrique Amaya

As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.


Protoplasma | 2007

Additional nucleoli and NOR activity during meiotic prophase I in larch (Larix decidua Mill.).

Dariusz Jan Smoliński; Janusz Niedojadło; Anna Noble; Alicja Górska-Brylass

Summary.Transcriptional activity was investigated in successive stages of prophase I (male meiosis) of larch meiocytes. Br-UTP incorporated into RNA was detected by light and electron microscopy. Two peaks of RNA synthesis were identified in the nucleolus. The first occurred during the zygotene–pachytene stage and the second (not previously described in plant meiocytes) in the diplotene. These processes correlated with a considerable increase in nucleolus volume during these periods. At the end of the zygotene, several perinucleolar structures lying close to each other and containing rRNA, argyrophilic proteins, U3 small nucleolar RNA, and fibrillarin were observed. The occurrence of newly formed RNA was also observed in these structures. This suggests that the observed perinucleolar structures correspond to the additional nucleoli known from animals.


Histochemistry and Cell Biology | 2011

Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies

Dariusz Jan Smoliński; Bogdan Wróbel; Anna Noble; Agnieszka Zienkiewicz; Alicja Górska-Brylass

Small nuclear ribonucleoproteins (snRNPs) play a fundamental role in pre-mRNA processing in the nucleus. The biogenesis of snRNPs involves a sequence of events that occurs in both the nucleus and cytoplasm. Despite the wealth of biochemical information about the cytoplasmic assembly of snRNPs, little is known about the spatial organization of snRNPs in the cytoplasm. In the cytoplasm of larch microsporocytes, a cyclic appearance of bodies containing small nuclear RNA (snRNA) and Sm proteins was observed during anther meiosis. We observed a correlation between the occurrence of cytoplasmic snRNP bodies, the levels of Sm proteins, and the dynamic formation of Cajal bodies. Larch microsporocytes were used for these studies. This model is characterized by natural fluctuations in the level of RNA metabolism, in which periods of high transcriptional activity are separated from periods of low transcriptional activity. In designing experiments, the authors considered the differences between the nuclear and cytoplasmic phases of snRNP maturation and generated a hypothesis about the direct participation of Sm proteins in a molecular switch triggering the formation of Cajal bodies.


Journal of Leukocyte Biology | 2017

Adipose tissue macrophages develop from bone marrow–independent progenitors in Xenopus laevis and mouse

Syed F.Hassnain Waqas; Anna Noble; Anh Cuong Hoang; Grace Ampem; Manuela Popp; Sarah Strauß; Matthew Guille; Tamás Röszer

ATMs have a metabolic impact in mammals as they contribute to metabolically harmful AT inflammation. The control of the ATM number may have therapeutic potential; however, information on ATM ontogeny is scarce. Whereas it is thought that ATMs develop from circulating monocytes, various tissue‐resident Mϕs are capable of self‐renewal and develop from BM‐independent progenitors without a monocyte intermediate. Here, we show that amphibian AT contains self‐renewing ATMs that populate the AT before the establishment of BM hematopoiesis. Xenopus ATMs develop from progenitors of aVBI. In the mouse, a significant amount of ATM develops from the yolk sac, the mammalian equivalent of aVBI. In summary, this study provides evidence for a prenatal origin of ATMs and shows that the study of amphibian ATMs can enhance the understanding of the role of the prenatal environment in ATM development.


Reproduction, Fertility and Development | 2015

Validation of the sperm chromatin dispersion (SCD) test in the Amphibian Xenopus laevis using in situ nick translation and comet assay

K. Pollock; J. Gosálvez; F. Arroyo; C. López-Fernández; Matthew Guille; Anna Noble; S. D. Johnston

The integrity of sperm DNA is becoming increasingly recognised as an important parameter of semen quality, but there are no published reports of this procedure for any amphibian. The primary aim of this study was to apply a modified sperm chromatin dispersion (SCD) test (Halomax) to an amphibian sperm model (African clawed frog; Xenopus laevis) and to validate the assay against in situ nick translation (ISNT) and the double-comet assay procedure. Inactivated spermatozoa were collected from fresh testes (n=3). Sperm DNA fragmentation (SDF) for each sperm sample was conducted immediately following activation (T0) and again after 1h (T1) and 24h (T24) of incubation at room temperature in order to produce a range of spermatozoa with differing levels of DNA damage. The SCD procedure resulted in the production of three nuclear morphotypes; amphibian sperm morphotype 1 (ASM-1) and ASM-2 showed no evidence of DNA damage, whereas ASM-3 spermatozoa were highly fragmented with large halos of dispersed DNA fragments and a reduced nuclear core. ISNT confirmed that ASM-3 nuclei contained damaged DNA. There was a significant correlation (r=0.9613) between the levels of ASM-3 detected by the SCD test and SDF revealed by the double-comet assay.


Frontiers in Aging Neuroscience | 2015

The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development

Júlia Meireles Nogueira; Katarzyna Hawrot; Colin Sharpe; Anna Noble; William M. Wood; Erika Cristina Jorge; David J. Goldhamer; Gabrielle Kardon; Susanne Dietrich

Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm.


Theriogenology | 2017

An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs

Esther J. Pearl; Sean Morrow; Anna Noble; Adélaïde Lerebours; Marko E. Horb; Matthew Guille

Cryogenic storage of sperm from genetically altered Xenopus improves cost effectiveness and animal welfare associated with their use in research; currently it is routine for X. tropicalis but not reliable for X. laevis. Here we compare directly the three published protocols for Xenopus sperm freeze-thaw and determine whether sperm storage temperature, method of testes maceration and delays in the freezing protocols affect successful fertilisation and embryo development in X. laevis. We conclude that the protocol is robust and that the variability observed in fertilisation rates is due to differences between individuals. We show that the embryos made from the frozen-thawed sperm are normal and that the adults they develop into are reproductively indistinguishable from others in the colony. This opens the way for using cryopreserved sperm to distribute dominant genetically altered (GA) lines, potentially saving travel-induced stress to the male frogs, reducing their numbers used and making Xenopus experiments more cost effective.


PLOS ONE | 2015

Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis

Takeshi Igawa; Ai Watanabe; Atsushi Suzuki; Akihiko Kashiwagi; Keiko Kashiwagi; Anna Noble; Matthew Guille; David E. Simpson; Marko E. Horb; Tamotsu Fujii; Masayuki Sumida

The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts.


Methods of Molecular Biology | 2012

Husbandry of Xenopus tropicalis

Alan Jafkins; Anita Abu-Daya; Anna Noble; Lyle B. Zimmerman; Matthew Guille

Xenopus tropicalis combine the advantages of X. laevis, for example using explants and targeted gain of function, with the ability to take classical genetics approaches to answering cell and developmental biology questions making it arguably the most versatile of the model organisms. Against this background, husbandry of X. tropicalis is less well developed than for its larger, more robust relative. Here we describe the methods used to keep and breed these frogs successfully.


Gene | 2017

A newly identified Rab-GDI paralogue has a role in neural development in amphibia

Liliya Nazlamova; Anna Noble; Frank R. Schubert; John McGeehan; Fiona A. Myers; Matthew Guille; Garry Scarlett

Vesicle shuttling is critical for many cellular and organismal processes, including embryonic development. GDI proteins contribute to vesicle shuttling by regulating the activity of Rab GTPases, controlling their cycling between the inactive cytosol and active membrane bound states. While identifying genes controlled by A-form DNA sequences we discovered a previously unknown member of the GDI family, GDI3. The GDI3 gene is found only in amphibians and fish and is developmentally expressed in Xenopus from neurula stages onwards in the neural plate, and subsequently in both dorsal and anterior structures. Depletion or over-expression of the GDI3 protein in Xenopus embryos gives rise to very similar phenotypes, suggesting that strict control of GDI3 protein levels is required for correct embryonic development. Our analysis suggests the evolutionary origins of GDI3 and that it is functionally distinct from GDI1. Predicted structural analysis of GDI3 suggests that the key difference between GDI1 and GDI3 lies in their lipid binding pockets.

Collaboration


Dive into the Anna Noble's collaboration.

Top Co-Authors

Avatar

Matthew Guille

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Alicja Górska-Brylass

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

Dariusz Jan Smoliński

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

Alan Jafkins

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Garry Scarlett

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Marko E. Horb

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Zienkiewicz

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

Bogdan Wróbel

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

Janusz Niedojadło

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge