Anna Pia Plazzo
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Pia Plazzo.
Journal of Biological Chemistry | 2008
Martin Stöckl; Anna Pia Plazzo; Thomas Korte; Andreas Herrmann
The presence of lipid domains in cellular membranes and their characteristic features are still an issue of dividing discussion. Several recent studies implicate lipid domains in plasma membranes of mammalian cells as short lived and in the submicron range. Measuring the fluorescence lifetime of appropriate lipid analogues is a proper approach to detect domains with such properties. Here, the sensitivity of the fluorescence lifetime of1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-hexanoyl]-sn-glycero-3-phospholipid (C6-NBD-phospholipid) analogues has been employed to characterize lipid domains in giant unilamellar vesicles (GUVs) and the plasma membrane of mammalian cells by fluorescence lifetime imaging (FLIM). Fluorescence decay of C6-NBD-phosphatidylcholine is characterized by a short and long lifetime. For GUVs forming microscopically visible lipid domains the longer lifetime in the liquid disordered (ld) and the liquid ordered (lo) phase was clearly distinct, being ∼7 ns and 11 ns, respectively. Lifetimes were not sensitive to variation of cholesterol concentration of domain-forming GUVs indicating that the lipid composition and physical properties of those lipid domains are well defined entities. Even the existence of submicroscopic domains can be detected by FLIM as demonstrated for GUVs of palmitoyloleoyl phosphatidylcholine/N-palmitoyl-d-sphingomyelin/cholesterol mixtures. A broad distribution of the long lifetime was found for C6-NBD-phosphatidylcholine inserted in the plasma membrane of HepG2 and HeLa cells centered around 11 ns. FLIM studies on lipid domains forming giant vesicles derived from the plasma membrane of HeLa cells may suggest that a variety of submicroscopic lipid domains exists in the plasma membrane of intact cells.
Biophysical Journal | 2010
Jörg Nikolaus; Silvia Scolari; Elisa Bayraktarov; Nadine Jungnick; Stephanie Engel; Anna Pia Plazzo; Martin Stöckl; Rudolf Volkmer; Michael Veit; Andreas Herrmann
The HA of influenza virus is a paradigm for a transmembrane protein thought to be associated with membrane-rafts, liquid-ordered like nanodomains of the plasma membrane enriched in cholesterol, glycosphingolipids, and saturated phospholipids. Due to their submicron size in cells, rafts can not be visualized directly and raft-association of HA was hitherto analyzed by indirect methods. In this study, we have used GUVs and GPMVs, showing liquid disordered and liquid ordered domains, to directly visualize partition of HA by fluorescence microscopy. We show that HA is exclusively (GUVs) or predominantly (GPMVs) present in the liquid disordered domain, regardless of whether authentic HA or domains containing its raft targeting signals were reconstituted into model membranes. The preferential partition of HA into ld domains and the difference between lo partition in GUV and GPMV are discussed with respect to differences in packaging of lipids in membranes of model systems and living cells suggesting that physical properties of lipid domains in biological membranes are tightly regulated by protein-lipid interactions.
The FASEB Journal | 2009
Ana Zarubica; Anna Pia Plazzo; Martin Stöckl; Tomasz Trombik; Yannick Hamon; Peter K. Müller; Thomas Günther Pomorski; Andreas Herrmann; Giovanna Chimini
The ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered‐like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools.—Zarubica, A., Plazzo, A.P., Stockl, M., Trombik, T., Hamon, Y., Muller, P., Pomorski, T., Herrmann, A., Chimini, G. Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J. 23, 1775–1785 (2009)
Journal of Biological Chemistry | 2012
Anna Pia Plazzo; Nicola De Franceschi; Francesca Da Broi; Francesco Zonta; Maria Federica Sanasi; Francesco Filippini; Marco Mongillo
Background: ChR2 is a light-gated ion channel allowing fast non-invasive control of cell membrane potential. Results: We combined bioinformatic modeling and electrophysiology to infer structure/function details on ChR2. Conclusion: We show a complete structural model of the channel, describe the ion-conducting pathway and identify key residues involved in ionic permeability and in photoactivation. Significance: These results expand our knowledge on the structural determinants of ChR2. Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.
Chemistry and Physics of Lipids | 2012
Anna Pia Plazzo; Chris T. Höfer; László Jicsinszky; Éva Fenyvesi; Lajos Szente; Jürgen Schiller; Andreas Herrmann; Peter Müller
Cyclodextrins (CDs) are widely used both in pharmaceutical applications to improve drug bioavailability and in cell biology as cholesterol-depleting and -delivering agents. Recently, it was shown that β-CD covalently coupled to fluorescent dextran polymers accumulates in cholesterol-enriched lysosomal storage organelles of human fibroblasts (Rosenbaum et al., 2010). By employing a methyl-βCD tagged with fluorescein (FMβCD), we have characterized the cellular trafficking of the CD in mammalian cell lines and its distribution into the endocytic compartments within the first minutes following addition to cells. FMβCD enters mammalian cells via endocytosis. The colocalization of FMβCD with transferrin-containing endosomes and the inhibition of FMβCD internalization by chlorpromazine or by an antisense RNA against clathrin heavy chain indicate that FMβCD is taken up via receptor-mediated, clathrin-dependent endocytosis. These results not only highlight the possibility of using CDs to target drugs intracellularly, but also warn about potential unwanted effects on cell physiology other than cholesterol extraction/loading at high concentrations, high temperatures and prolonged incubation times.
The Journal of Physiology | 2018
Valentina Prando; Francesca Da Broi; Mauro Franzoso; Anna Pia Plazzo; Nicola Pianca; Maura Francolini; Cristina Basso; Matthew W. Kay; Tania Zaglia; Marco Mongillo
The present study demonstrates, by in vitro and in vivo analyses, the novel concept that signal transmission between sympathetic neurons and the heart, underlying the physiological regulation of cardiac function, operates in a quasi‐synaptic fashion. This is a result of the direct coupling between neurotransmitter releasing sites and effector cardiomyocyte membranes.
Transmembrane Dynamics of Lipids | 2011
Peter Müller; Anna Pia Plazzo; Andreas Herrmann
The Journal of Physiology | 2018
Valentina Prando; Francesca Da Broi; Mauro Franzoso; Anna Pia Plazzo; Nicola Pianca; Maura Francolini; Cristina Basso; Matthew W. Kay; Tania Zaglia; Marco Mongillo
Biophysical Journal | 2009
Martin Stöckl; Anna Pia Plazzo; Thomas Korte; Andreas Herrmann
Archive | 2008
Lipid Analogues; Anna Pia Plazzo; Thomas Korte; Andreas Herrmann