Anna Pick Kiong Ling
International Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Pick Kiong Ling.
Advances in Pharmacological Sciences | 2016
Kit Ying Lam; Anna Pick Kiong Ling; Rhun Yian Koh; Ying Pei Wong; Yee-How Say
Medicinal plants continue to play an important role in modern medications and healthcare as consumers generally believe that most of them cause fewer or milder adverse effects than the conventional modern medicines. In order to use the plants as a source of medicinal agents, the bioactive compounds are usually extracted from plants. Therefore, the extraction of bioactive compounds from medicinal plants is a crucial step in producing plant-derived drugs. One of the bioactive compounds isolable from medicinal plants, orientin, is often used in various bioactivity studies due to its extensive beneficial properties. The extraction of orientin in different medicinal plants and its medicinal properties, which include antioxidant, antiaging, antiviral, antibacterial, anti-inflammation, vasodilatation and cardioprotective, radiation protective, neuroprotective, antidepressant-like, antiadipogenesis, and antinociceptive effects, are discussed in detail in this review.
Journal of Zhejiang University-science B | 2014
Shiau Mei Woon; Yew Wei Seng; Anna Pick Kiong Ling; Soi Moi Chye; Rhun Yian Koh
Objective: This study examined the anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 adipocytes. Methods: Methanol and water extracts of leaves of the F. deltoidea varieties were analyzed to determine their total flavonoid content (TFC) and total phenolic content (TPC), respectively. The study was initiated by determining the maximum non-toxic dose (MNTD) of the methanol and water extracts for 3T3-L1 preadipocytes. Possible anti-adipogenic effects were then examined by treating 2-d post confluent 3T3-L1 preadipocytes with either methanol extract or water extract at MNTD and half MNTD (½MNTD), after which the preadipocytces were induced to form mature adipocytes. Visualisation and quantification of lipid content in mature adipocytes were carried out through oil red O staining and measurement of optical density (OD) at 520 nm, respectively. Results: The TFCs of the methanol extracts were 1.36 and 1.97 g quercetin equivalents (QE)/100 g dry weight (DW), while the TPCs of the water extracts were 5.61 and 2.73 g gallic acid equivalents (GAE)/100 g DW for var. deltoidea and var. angustilofia, respectively. The MNTDs determined for methanol and water extracts were (300.0±28.3) and (225.0±21.2) µg/ml, respectively, for var. deltoidea, while much lower MNTDs [(60.0±2.0) µg/ml for methanol extracts and (8.0±1.0) µg/ml for water extracts] were recorded for var. angustifolia. Studies revealed that the methanol extracts of both varieties and the water extracts of var. angustifolia at either MNTD or ½MNTD significantly inhibited the maturation of preadipocytes. Conclusions: The inhibition of the formation of mature adipocytes indicated that leaf extracts of F. deltoidea could have potential anti-obesity effects.
Journal of Zhejiang University-science B | 2013
Anna Pick Kiong Ling; Kinn Poay Tan; Sobri Hussein
ObjectiveLabisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.MethodsThe capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.ResultsMedium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture.ConclusionsCallus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.
Journal of Botany | 2016
Erna Laere; Anna Pick Kiong Ling; Ying Pei Wong; Rhun Yian Koh; Mohd Azmi Mohd Lila; Sobri Hussein
Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.
Molecular Medicine Reports | 2015
Rhun Yian Koh; Yi Chi Sim; Hwee Jin Toh; Liang Kuan Liam; Rachael Sze Lynn Ong; Mei Yeng Yew; Yee Lian Tiong; Anna Pick Kiong Ling; Soi Moi Chye; Khuen Yen Ng
The chemotherapeutic agents used to treat nasopharyngeal cancer (NPC) exhibit low efficacy. Strobilanthes crispa Blume is widely used for its anticancer, diuretic and anti‑diabetic properties. The present study aimed to determine the cytotoxic and apoptogenic effects of S. crispa on CNE‑1 NPC cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyl tetrazolium bromide assay was used to evaluate the cytotoxic effects of S. crispa against CNE‑1 cells. The rate of apoptosis was determined using propidium iodide staining and caspase assays. Ethyl acetate, hexane and chloroform extracts of S. crispa leaves all exhibited cytotoxic effects on CNE‑1 cells, at a half maximal inhibitory concentration (IC50) of 119, 123.5 and 161.7 µg/ml, respectively. In addition, hexane, chloroform and ethyl acetate extracts of S. crispa stems inhibited CNE‑1 cell proliferation, at a IC50 of 49.4, 148.3 and 163.5 µg/ml, respectively. Flow cytometric analysis revealed an increased proportion of cells in the sub G1 phase and a decreased proportion of cells in the G2/M phase, following treatment with the extracts. However, the extracts did not alter the activities of caspase ‑3/7, ‑8 and ‑9. No cytotoxic effect was observed when the cells were treated with the methanol and water extracts of S. crispa stems and leaves. In conclusion, the S. crispa extracts were cytotoxic against CNE‑1 cells and these extracts were able to induce apoptosis, independent of caspase activation.
Asian Biomedicine | 2018
Pei Ling Yeo; Chooi Ling Lim; Soi Moi Chye; Anna Pick Kiong Ling; Rhun Yian Koh
Abstract Target-specific drug-delivery systems for the administration of pharmaceutical compounds enable the localization of drugs to diseased sites. Various types of drug-delivery systems utilize carriers, such as immunoglobulins, serum proteins, synthetic polymers, liposomes, and microspheres. The vesicular system of niosomes, with their bilayer structure assembled by nonionic surfactants, is able to enhance the bioavailability of a drug to a predetermined area for a period. The amphiphilic nature of niosomes promotes their efficiency in encapsulating lipophilic or hydrophilic drugs. Other additives, such as cholesterol, can be used to maintain the rigidity of the niosomes’ structure. This narrative review describes fundamental aspects of niosomes, including their structural components, methods of preparation, limitations, and current applications to various diseases.
Oncology Letters | 2017
Rhun Yian Koh; Foong Ping Lim; Leslie Siing Yie Ling; Catherine Pei Ling Ng; Siew Foong Liew; Mei Yeng Yew; Yee Lian Tiong; Anna Pick Kiong Ling; Soi Moi Chye; Khuen Yen Ng
Cancer is a major public health concern not only in developed countries, but also in developing countries. It is one of the leading causes of mortality worldwide. However, current treatments may cause severe side effects and harm. Therefore, recent research has been focused on identifying alternative therapeutic agents extracted from plant-based sources in order to develop novel treatment options for cancer. Strobilanthes crispa Blume is a plant native to countries including Madagascar and Indonesia. It has been used as an anti-diabetic, diuretic and laxative in traditional folk medicine. Furthermore, S. crispa has potential in treating cancer, as evidenced in previous studies. In the present study, the cytotoxic and apoptotic activities of S. crispa crude extracts were investigated in liver and breast cancer cell lines. Hexane, ethyl acetate, chloroform, methanol and water extracts prepared from the leaves, and stems of S. crispa were evaluated for their cytotoxicity on HepG-2 and MDA-MB-231 cells using an MTT assay. The anti-proliferative properties of stem hexane (SH) extract on both cell lines were analysed using cell doubling time determination and cell cycle analysis, while the apoptogenic properties was determined through the detection of caspase-8. Among the extracts tested, SH extract exhibited the lowest half maximal inhibitory concentrations in both the cell lines. The SH extract induced morphological changes in HepG-2 and MDA-MB-231 cells, and significantly delayed cell population doubling time. Furthermore, it altered cell cycle profile and significantly increased caspase-8 activity in HepG-2 cells, but not in MDA-MB-231 cells. In conclusion, the SH extract of S. crispa possesses potent anticancer properties and may be a suitable chemotherapeutic target.
Molecular Medicine Reports | 2014
Benjamin Ngee Tiing Law; Anna Pick Kiong Ling; Rhun Yian Koh; Soi Moi Chye; Ying Pei Wong
International Journal of Molecular Medicine | 2018
Andrew Octavian Sasmita; Anna Pick Kiong Ling; Kenny Gah Leong Voon; Rhun Yian Koh; Ying Pei Wong
Journal of Fundamental and Applied Sciences | 2017
Anna Pick Kiong Ling; H. H. Chan; Rhun Yian Koh; Ying Pei Wong