Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhun Yian Koh is active.

Publication


Featured researches published by Rhun Yian Koh.


BMC Complementary and Alternative Medicine | 2012

Screening of anti-dengue activity in methanolic extracts of medicinal plants

Leon Ic Tang; Anna Pk Ling; Rhun Yian Koh; Soi M. Chye; Kenny Voon

BackgroundDengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.MethodsPresent studies investigated the antiviral effects of standardised methanolic extracts of Andrographis paniculata, Citrus limon, Cymbopogon citratus, Momordica charantia, Ocimum sanctum and Pelargonium citrosum on dengue virus serotype 1 (DENV-1).ResultsO. sanctum contained 88.6% of total flavonoids content, an amount that was the highest among all the six plants tested while the least was detected in M. charantia. In this study, the maximum non-toxic dose (MNTD) of the six medicinal plants was determined by testing the methanolic extracts against Vero E6 cells in vitro. Studies also determined that the MNTD of methanolic extract was in the decreasing order of M. charantia > C. limon > P. citrosum, O. sanctum > A. paniculata > C. citratus. Antiviral assay based on cytopathic effects (CPE) denoted by degree of inhibition upon treating DENV1-infected Vero E6 cells with MNTD of six medicinal plants showed that A. paniculata has the most antiviral inhibitory effects followed by M. charantia. These results were further verified with an in vitro inhibition assay using MTT, in which 113.0% and 98.0% of cell viability were recorded as opposed to 44.6% in DENV-1 infected cells. Although methanolic extracts of O. sanctum and C. citratus showed slight inhibition effect based on CPE, a significant inhibition was not reflected in MTT assay. Methanolic extracts of C. limon and P. citrosum did not prevent cytopathic effects or cell death from DENV-1.ConclusionsThe methanol extracts of A. paniculata and M. charantia possess the ability of inhibiting the activity of DENV-1 in in vitro assays. Both of these plants are worth to be further investigated and might be advantageous as an alternative for dengue treatment.


Molecular Medicine Reports | 2015

Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis.

Rhun Yian Koh; Chooi Ling Lim; Bruce D. Uhal; Maha Abdullah; Sharmili Vidyadaran; Coy Choke Ho; Heng Fong Seow

Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.


Advances in Pharmacological Sciences | 2016

A Review on Medicinal Properties of Orientin

Kit Ying Lam; Anna Pick Kiong Ling; Rhun Yian Koh; Ying Pei Wong; Yee-How Say

Medicinal plants continue to play an important role in modern medications and healthcare as consumers generally believe that most of them cause fewer or milder adverse effects than the conventional modern medicines. In order to use the plants as a source of medicinal agents, the bioactive compounds are usually extracted from plants. Therefore, the extraction of bioactive compounds from medicinal plants is a crucial step in producing plant-derived drugs. One of the bioactive compounds isolable from medicinal plants, orientin, is often used in various bioactivity studies due to its extensive beneficial properties. The extraction of orientin in different medicinal plants and its medicinal properties, which include antioxidant, antiaging, antiviral, antibacterial, anti-inflammation, vasodilatation and cardioprotective, radiation protective, neuroprotective, antidepressant-like, antiadipogenesis, and antinociceptive effects, are discussed in detail in this review.


Environmental Toxicology | 2014

Apoptosis Induced by para-Phenylenediamine Involves Formation of ROS and Activation of p38 and JNK in Chang Liver Cells

Soi Moi Chye; Yee Lian Tiong; Wai Kien Yip; Rhun Yian Koh; Yi Won Len; Heng Fong Seow; Khuen Yen Ng; De Alwis Ranjit; Ssu-Ching Chen

para‐phenylenediamine (p‐PD) is a suspected carcinogen, but it has been widely used as a component in permanent hair dyes. In this study, the mechanism of p‐PD‐induced cell death in normal Chang liver cells was investigated. The results demonstrated that p‐PD decreased cell viability in a dose‐dependent manner. Cell death via apoptosis was confirmed by enhanced DNA damage and increased cell number in the sub‐G1 phase of the cell cycle, using Hoechst 33258 dye staining and flow cytometry analysis. Apoptosis via reactive oxygen species generation was detected by the dichlorofluorescin diacetate staining method. Mitogen‐activated protein kinase (MAPK) activation was assessed by western blot analysis and revealed that p‐PD activated not only stress‐activated protein kinase (SAPK)/c‐Jun N‐terminal kinases (JNK) and p38 MAPK but also extracellular signal‐regulated kinase (ERK). Cytotoxicity and apoptosis induced by p‐PD were markedly enhanced by ERK activation and selectively inhibited by ERK inhibitor PD98059, thus indicating a negative role of ERK. In contrast, inhibition of p38 MAPK activity with the p38‐specific inhibitor SB203580 moderately inhibited cytotoxicity and apoptosis induction by p‐PD. Similarly, SP600125, an inhibitor of SAPK/JNK, moderately inhibited cytotoxicity and apoptosis induced by p‐PD, thus implying that p38 MAPK and SAPK/JNK had a partial role in p‐PD‐induced apoptosis. Western blot analysis revealed that p‐PD significantly increased phosphorylation of p38 and SAPK/JNK and decreased phosphorylation of ERK. In conclusion, the results demonstrated that SAPK/JNK and p38 cooperatively participate in apoptosis induced by p‐PD and that a decreased ERK signal contributes to growth inhibition or apoptosis.


Journal of Zhejiang University-science B | 2014

Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes.

Shiau Mei Woon; Yew Wei Seng; Anna Pick Kiong Ling; Soi Moi Chye; Rhun Yian Koh

Objective: This study examined the anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 adipocytes. Methods: Methanol and water extracts of leaves of the F. deltoidea varieties were analyzed to determine their total flavonoid content (TFC) and total phenolic content (TPC), respectively. The study was initiated by determining the maximum non-toxic dose (MNTD) of the methanol and water extracts for 3T3-L1 preadipocytes. Possible anti-adipogenic effects were then examined by treating 2-d post confluent 3T3-L1 preadipocytes with either methanol extract or water extract at MNTD and half MNTD (½MNTD), after which the preadipocytces were induced to form mature adipocytes. Visualisation and quantification of lipid content in mature adipocytes were carried out through oil red O staining and measurement of optical density (OD) at 520 nm, respectively. Results: The TFCs of the methanol extracts were 1.36 and 1.97 g quercetin equivalents (QE)/100 g dry weight (DW), while the TPCs of the water extracts were 5.61 and 2.73 g gallic acid equivalents (GAE)/100 g DW for var. deltoidea and var. angustilofia, respectively. The MNTDs determined for methanol and water extracts were (300.0±28.3) and (225.0±21.2) µg/ml, respectively, for var. deltoidea, while much lower MNTDs [(60.0±2.0) µg/ml for methanol extracts and (8.0±1.0) µg/ml for water extracts] were recorded for var. angustifolia. Studies revealed that the methanol extracts of both varieties and the water extracts of var. angustifolia at either MNTD or ½MNTD significantly inhibited the maturation of preadipocytes. Conclusions: The inhibition of the formation of mature adipocytes indicated that leaf extracts of F. deltoidea could have potential anti-obesity effects.


Cellular and Molecular Neurobiology | 2018

Tau Proteins and Tauopathies in Alzheimer’s Disease

Fong Ping Chong; Khuen Yen Ng; Rhun Yian Koh; Soi Moi Chye

Alzheimer’s disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.


Environmental Toxicology | 2017

para-Phenylenediamine induces apoptosis through activation of reactive oxygen species-mediated mitochondrial pathway, and inhibition of the NF-κB, mTOR, and Wnt pathways in human urothelial cells.

Kasi Reena; Khuen Yen Ng; Rhun Yian Koh; Ponnudurai Gnanajothy; Soi Moi Chye

para‐Phenylenediamine (PPD) has long been used in two‐thirds of permanent oxidative hair dye formulations. Epidemiological studies and in vivo studies have shown that hair dye is a suspected carcinogen of bladder cancer. However, the toxicity effects of PPD to human bladder remains elusive. In this study, the effects of PPD and its involvement in the apoptosis pathways in human urothelial cells (UROtsa) was investigated. It was demonstrated that PPD decreased cell viability and increased the number of sub‐G1 hypodiploid cells in UROtsa cells. Cell death due to apoptosis was detected using Annexin V binding assay. Further analysis showed PPD generated reactive oxygen species (ROS), induced mitochondrial dysfunction through the loss of mitochondrial membrane potential and increased caspase‐3 level in UROtsa cells. Western blot analysis of PPD‐treated UROtsa cells showed down‐regulation of phosphorylated proteins from NF‐κB, mTOR, and Wnt pathways. In conclusion, PPD induced apoptosis via activation of ROS‐mediated mitochondrial pathway, and possibly through inhibition of NF‐κB, mTOR, and Wnt pathways.


Asian Pacific Journal of Cancer Prevention | 2017

Clinacanthus Nutans Hexane Extracts Induce Apoptosis Through a Caspase-Dependent Pathway in Human Cancer Cell Lines

Pei Ying Ng; Soi Moi Chye; Chew Hee Ng; Rhun Yian Koh; Yee Lian Tiong; Liew Phing Pui; Yong Hui Tan; Crystale Siew Ying Lim; Khuen Yen Ng

Background: Clinacanthus nutans (C.nutans) is a plant consumed as a cancer treatment in tropical Asia. Despite the availability of numerous anecdotal reports, evaluation of active anticancer effects has remained elusive. Therefore we here examined antiproliferative, reactive oxygen species (ROS)-inducing and apoptosis mechanisms of whole plant extracts in different cancer cell lines. Methods: Antiproliferative actions of five solvent extracts (hexane, chloroform, ethyl acetate, methanol and water) of C.nutans were tested on non-small cell lung cancer (A549), nasopharygeal cancer (CNE1) and liver cancer (HepG2) cells using MTT assay. The most potent anticancer extract was then assessed by flow cytometry to study cell cycle changes. Intracellular levels of ROS were quantified by DCFH-DA assay. Involvement of the caspase pathway in induction of apoptosis was assessed using caspase assay kits. GC-MS analysis was performed to identify phytoconstituents in the extracts. Results: Hexane and chloroform extracts were antiproliferative against all three cell lines, while the ethyl acetate extract, at 300 µg/mL, was antiproliferative in the CNE1 but not A549 and HepG2 cases. Methanol and water extracts did not inhibit cancer cell proliferation. The most potent anticancer hexane extract was selected for further testing. It induced apoptosis in all three cell lines as shown by an increase in the percentage of cell in sub-G1 phase. Dose-dependent increase in ROS levels in all three cell lines indicated apoptosis to be possibly modulated by oxidative stress. At high concentrations (>100 µg/mL), hexane extracts upregulated caspases 8, 9 and 3/7 across all three cell lines. GC-MS analysis of the hexane extract revealed abundance of 31 compounds. Conclusion: Among the five extracts of C.nutans, that with hexane extract demonstrated the highest antiproliferative activity against all three cancer cell lines tested. Action appeared to be via ion of intracellular ROS, and induction of apoptosis via intrinsic and extrinsic caspase pathways.


Advances in Therapy | 2017

Repurposing Pentoxifylline for the Treatment of Fibrosis: An Overview

Wei Xiong Wen; Siang Yin Lee; Rafaella Siang; Rhun Yian Koh

Fibrosis is a potentially debilitating disease with high morbidity rates. It is estimated that half of all deaths that occur in the USA are attributed to fibrotic disorders. Fibrotic disorders are characterized primarily by disruption in the extracellular matrix deposition and breakdown equilibrium, leading to the accumulation of excessive amounts of extracellular matrix. Given the potentially high prevalence of fibrosis and the paucity of agents currently available for the treatment of this disease, there is an urgent need for the identification of drugs that can be utilized to treat the disease. Pentoxifylline is a methylxanthine derivative that is currently approved for the treatment of vascular diseases, in particular, claudication. Pentoxifylline has three main properties: improving the rheological properties of blood, anti-inflammatory, and antioxidative. Recently, the effectiveness of pentoxifylline in the treatment of fibrosis via attenuating and reversing fibrotic lesions has been demonstrated in several clinical trials and animal studies. As a result of the limited availability of antifibrotic agents in the long-term treatment of fibrosis that can attenuate and even reverse fibrotic lesions effectively, it would be of particular importance to consider the potential clinical utility of pentoxifylline in the treatment of fibrosis. Thus, this paper discusses the evolving roles of pentoxifylline in the treatment of different types of fibrosis.


Molecular Medicine Reports | 2015

Cytotoxic and apoptogenic effects of Strobilanthes crispa Blume extracts on nasopharyngeal cancer cells

Rhun Yian Koh; Yi Chi Sim; Hwee Jin Toh; Liang Kuan Liam; Rachael Sze Lynn Ong; Mei Yeng Yew; Yee Lian Tiong; Anna Pick Kiong Ling; Soi Moi Chye; Khuen Yen Ng

The chemotherapeutic agents used to treat nasopharyngeal cancer (NPC) exhibit low efficacy. Strobilanthes crispa Blume is widely used for its anticancer, diuretic and anti‑diabetic properties. The present study aimed to determine the cytotoxic and apoptogenic effects of S. crispa on CNE‑1 NPC cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyl tetrazolium bromide assay was used to evaluate the cytotoxic effects of S. crispa against CNE‑1 cells. The rate of apoptosis was determined using propidium iodide staining and caspase assays. Ethyl acetate, hexane and chloroform extracts of S. crispa leaves all exhibited cytotoxic effects on CNE‑1 cells, at a half maximal inhibitory concentration (IC50) of 119, 123.5 and 161.7 µg/ml, respectively. In addition, hexane, chloroform and ethyl acetate extracts of S. crispa stems inhibited CNE‑1 cell proliferation, at a IC50 of 49.4, 148.3 and 163.5 µg/ml, respectively. Flow cytometric analysis revealed an increased proportion of cells in the sub G1 phase and a decreased proportion of cells in the G2/M phase, following treatment with the extracts. However, the extracts did not alter the activities of caspase ‑3/7, ‑8 and ‑9. No cytotoxic effect was observed when the cells were treated with the methanol and water extracts of S. crispa stems and leaves. In conclusion, the S. crispa extracts were cytotoxic against CNE‑1 cells and these extracts were able to induce apoptosis, independent of caspase activation.

Collaboration


Dive into the Rhun Yian Koh's collaboration.

Top Co-Authors

Avatar

Soi Moi Chye

International Medical University

View shared research outputs
Top Co-Authors

Avatar

Khuen Yen Ng

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Anna Pick Kiong Ling

International Medical University

View shared research outputs
Top Co-Authors

Avatar

Chooi Ling Lim

International Medical University

View shared research outputs
Top Co-Authors

Avatar

Mei Yeng Yew

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Siang Yin Lee

International Medical University

View shared research outputs
Top Co-Authors

Avatar

Yee Lian Tiong

International Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Fong Seow

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Rafaella Siang

International Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge