Anna Portela
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Portela.
Nature Biotechnology | 2010
Anna Portela; Manel Esteller
Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.
Oncogene | 2010
Amaia Lujambio; Anna Portela; J Liz; Sonia A. Melo; Simona Rossi; R Spizzo; Carlo M. Croce; George A. Calin; Manel Esteller
Although only 1.5% of the human genome appears to code for proteins, much effort in cancer research has been devoted to this minimal fraction of our DNA. However, the last few years have witnessed the realization that a large class of non-coding RNAs (ncRNAs), named microRNAs, contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also shown that epigenetic silencing of microRNAs with tumor suppressor features by CpG island hypermethylation is a common hallmark of human tumors. Thus, we wondered whether there were other ncRNAs undergoing aberrant DNA methylation-associated silencing in transformed cells. We focused on the transcribed-ultraconserved regions (T-UCRs), a subset of DNA sequences that are absolutely conserved between orthologous regions of the human, rat and mouse genomes and that are located in both intra- and intergenic regions. We used a pharmacological and genomic approach to reveal the possible existence of an aberrant epigenetic silencing pattern of T-UCRs by treating cancer cells with a DNA-demethylating agent followed by hybridization to an expression microarray containing these sequences. We observed that DNA hypomethylation induces release of T-UCR silencing in cancer cells. Among the T-UCRs that were reactivated upon drug treatment, Uc.160+, Uc283+A and Uc.346+ were found to undergo specific CpG island hypermethylation-associated silencing in cancer cells compared with normal tissues. The analysis of a large set of primary human tumors (n=283) demonstrated that hypermethylation of the described T-UCR CpG islands was a common event among the various tumor types. Our finding that, in addition to microRNAs, another class of ncRNAs (T-UCRs) undergoes DNA methylation-associated inactivation in transformed cells supports a model in which epigenetic and genetic alterations in coding and non-coding sequences cooperate in human tumorigenesis.
Nature Structural & Molecular Biology | 2012
Sonia Guil; Marta Soler; Anna Portela; Jordi Carrère; Elena Fonalleras; Antonio Gomez; Alberto Villanueva; Manel Esteller
Epigenetic deregulation at a number of genomic loci is one of the hallmarks of cancer. A role for some RNA molecules in guiding repressive polycomb complex PRC2 to specific chromatin regions has been proposed. Here we use an in vivo cross-linking method to detect and identify direct PRC2-RNA interactions in human cancer cells, revealing a number of intronic RNA sequences capable of binding to the core component EZH2 and regulating the transcriptional output of its genomic counterpart. Overexpression of EZH2-bound intronic RNA for the H3K4 methyltransferase gene SMYD3 is concomitant with an increase in EZH2 occupancy throughout the corresponding genomic fragment and is sufficient to reduce levels of the endogenous transcript and protein, resulting in reduced growth capability in cell culture and animal models. These findings reveal the role of intronic RNAs in fine-tuning gene expression regulation at the level of transcriptional control.
Hepatology | 2015
Augusto Villanueva; Anna Portela; Sergi Sayols; Carlo Battiston; Yujin Hoshida; Jesús Méndez-González; Sandrine Imbeaud; Eric Letouzé; Virginia Hernández-Gea; Helena Cornella; Manel Solé; Josep Fuster; Jessica Zucman-Rossi; Vincenzo Mazzaferro; Manel Esteller; Josep M. Llovet
Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation‐based prognostic signature using a training‐validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine‐phosphate‐guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C–related HCC) and validation sets (n = 83; 47% alcohol‐related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF‐6] domain family member 1, insulin‐like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). Conclusions: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA–based signatures indicating tumors with progenitor cell features. (Hepatology 2015;61:1945–1956)
Molecular Cell | 2014
Julia Liz; Anna Portela; Marta Soler; Antonio Gomez; Hui Ling; Gracjan Michlewski; George A. Calin; Sonia Guil; Manel Esteller
Noncoding RNAs (ncRNAs) control cellular programs by affecting protein-coding genes, but evidence increasingly points to their involvement in a network of ncRNA-ncRNA interactions. Here, we show that a long ncRNA, Uc.283+A, controls pri-miRNA processing. Regulation requires complementarity between the lower stem region of the pri-miR-195 transcript and an ultraconserved sequence in Uc.283+A, which prevents pri-miRNA cleavage by Drosha. Mutation of the site in either RNA molecule uncouples regulation in vivo and in vitro. We propose a model in which lower-stem strand invasion by Uc.283+A impairs microprocessor recognition and efficient pri-miRNA cropping. In addition to identifying a case of RNA-directed regulation of miRNA biogenesis, our study reveals regulatory networks involving different ncRNA classes of importance in cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Raquel Boque-Sastre; Marta Soler; Cristina Oliveira-Mateos; Anna Portela; Catia Moutinho; Sergi Sayols; Alberto Villanueva; Manel Esteller; Sonia Guil
Significance The molecular mechanisms used by noncoding RNAs to regulate gene expression are largely unknown. We have discovered a previously unidentified regulatory phenomenon underlying the transcriptional activation of the intermediate filament protein vimentin. This regulation involves the participation of a previously uncharacterized head-to-head antisense transcript that forms part of a hybrid DNA:RNA structure known as the R loop. R loops have been the focus of recent research regarding their unexpected involvement in gene expression regulation. Antisense-mediated formation of the R loop supports a local chromatin environment that ensures the optimal binding of vimentin transcriptional activators. In addition, we describe how hypermethylation of the locus in a large panel of colon cancer patients is correlated with antisense silencing and, thereby, compromises its regulatory activity. The mechanisms used by antisense transcripts to regulate their corresponding sense mRNAs are not fully understood. Herein, we have addressed this issue for the vimentin (VIM) gene, a member of the intermediate filament family involved in cell and tissue integrity that is deregulated in different types of cancer. VIM mRNA levels are positively correlated with the expression of a previously uncharacterized head-to-head antisense transcript, both transcripts being silenced in colon primary tumors concomitant with promoter hypermethylation. Furthermore, antisense transcription promotes formation of an R-loop structure that can be disfavored in vitro and in vivo by ribonuclease H1 overexpression, resulting in VIM down-regulation. Antisense knockdown and R-loop destabilization both result in chromatin compaction around the VIM promoter and a reduction in the binding of transcriptional activators of the NF-κB pathway. These results are the first examples to our knowledge of R-loop–mediated enhancement of gene expression involving head-to-head antisense transcription at a cancer-related locus.
Nucleic Acids Research | 2011
Jesús Espada; Héctor Peinado; Lidia Lopez-Serra; Fernando Setién; Paula Lopez-Serra; Anna Portela; Jaime Renart; Elisa Carrasco; María Isabel Calvo; Angeles Juarranz; Amparo Cano; Manel Esteller
Mammalian DNA methyltransferase 1 (DNMT1) is essential for maintaining DNA methylation patterns after cell division. Disruption of DNMT1 catalytic activity results in whole genome cytosine demethylation of CpG dinucleotides, promoting severe dysfunctions in somatic cells and during embryonic development. While these observations indicate that DNMT1-dependent DNA methylation is required for proper cell function, the possibility that DNMT1 has a role independent of its catalytic activity is a matter of controversy. Here, we provide evidence that DNMT1 can support cell functions that do not require the C-terminal catalytic domain. We report that PCNA and DMAP1 domains in the N-terminal region of DNMT1 are sufficient to modulate E-cadherin expression in the absence of noticeable changes in DNA methylation patterns in the gene promoters involved. Changes in E-cadherin expression are directly associated with regulation of β-catenin-dependent transcription. Present evidence suggests that the DNMT1 acts on E-cadherin expression through its direct interaction with the E-cadherin transcriptional repressor SNAIL1.
Nature Medicine | 2015
Miguel Vizoso; Humberto J. Ferreira; Paula Lopez-Serra; F. Javier Carmona; Anna Martínez-Cardús; Maria Romina Girotti; Alberto Villanueva; Sonia Guil; Catia Moutinho; Julia Liz; Anna Portela; Holger Heyn; Sebastian Moran; August Vidal; María Martínez-Iniesta; Jose Luis Manzano; Maria Teresa Fernandez-Figueras; Elena Elez; Eva Muñoz-Couselo; Rafael Botella-Estrada; A. Berrocal; Fredrik Pontén; Joost van den Oord; William M. Gallagher; Dennie T. Frederick; Keith T. Flaherty; Ultan McDermott; Paul Lorigan; Richard Marais; Manel Esteller
Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors.
Oncogene | 2013
Anna Portela; J Liz; V Nogales; F Setién; Alberto Villanueva; Manel Esteller
Promoter CpG island hypermethylation of tumor suppressor genes is an epigenetic hallmark of human cancer commonly associated with nucleosome occupancy and the transcriptional silencing of the neighboring gene. Nucleosomes can determine the underlying DNA methylation status. Herein, we show that the opposite is also true: DNA methylation can determine nucleosome positioning. Using a cancer model and digital nucleosome positioning techniques, we demonstrate that the induction of DNA hypomethylation events by genetic (DNMT1/DNMT3B deficient cells) or drug (a DNA demethylating agent) approaches is associated with the eviction of nucleosomes from previously hypermethylated CpG islands of tumor suppressor genes. Most importantly, the establishment of a stable cell line that restores DNMT1/DNMT3B deficiency shows that nucleosomes reoccupy their positions in de novo methylated CpG islands. Finally, we extend these results to the genomic level, combining a DNA methylation microarray and the nucleosome positioning technique. Using this global approach, we observe the dependency of nucleosome occupancy upon the DNA methylation status. Thus, our results suggest that there is a close association between hypermethylated CpG islands and the presence of nucleosomes, such that each of these epigenetic mechanisms can determine the recruitment of the other.
Epigenetics | 2011
Maria S. Iliou; Amaia Lujambio; Anna Portela; Oliver Brüstle; Philipp Koch; Per Henrik Andersson-Vincent; Erik Sundström; Outi Hovatta; Manel Esteller
It has been proposed that the existence of stem cell epigenetic patterns confer a greater likelihood of CpG island hypermethylation on tumor suppressor-coding genes in cancer. The suggested mechanism is based on the Polycomb-mediated methylation of K27 of histone H3 and the recruitment of DNA methyltransferases on the promoters of tumor suppressor genes in cancer cells, when those genes are preferentially pre-marked in embryonic stem cells (ESCs) with bivalent chromatin domains. On the other hand, miRNAs appear to be dysregulated in cancer, with many studies reporting silencing of miRNA genes due to aberrant hypermethylation of their promoter regions. We wondered whether a pre-existing histone modification profile in stem cells might also contribute to the DNA methylation-associated silencing of miRNA genes in cancer. To address this, we examined a group of tumor suppressor miRNA genes previously reported to become hypermethylated and inactivated specifically in cancer cells. We analyzed the epigenetic events that take place along their promoters in human embryonic stem cells and in transformed cells. Our results suggest that there is a positive correlation between the existence of bivalent chromatin domains on miRNA promoters in ESCs and the hypermethylation of those genes in cancer, leading us to conclude that this epigenetic mark could be a mechanism that prepares miRNA promoters for further DNA hypermethylation in human tumors.