Anna R. Mäkelä
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna R. Mäkelä.
Journal of Virology | 2006
Anna R. Mäkelä; Heli Matilainen; Daniel White; Erkki Ruoslahti; Christian Oker-Blom
ABSTRACT Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 peptide inhibited viral binding to MDA-MB-435 cells with a greater magnitude and specificity than the CGKRK and F3 peptides. Maximal 7- and 24-fold increases in transduction, determined by transgene expression level, were achieved for the MDA-MB-435 and HepG2 cells, respectively. The internalization of each virus was inhibited by ammonium chloride treatment, suggesting the use of a similar endocytic entry route. The LyP-1 and F3 peptides showed an apparent inhibitory effect in transduction of HepG2 cells with the corresponding display viruses. Together, these results imply that the efficiency of baculovirus-mediated gene delivery can be significantly enhanced in vitro when tumor-targeting ligands are used and therefore highlight the potential of baculovirus vectors in cancer gene therapy.
Advances in Virus Research | 2006
Anna R. Mäkelä; Christian Oker-Blom
Abstract For over a decade, phage display has proven to be of immense value, allowing selection of a large variety of genes with novel functions from diverse libraries. However, the folding and modification requirements of complex proteins place a severe constraint on the type of protein that can be successfully displayed using this strategy, a restriction that could be resolved by similarly engineering a eukaryotic virus for display purposes. The quite recently established eukaryotic molecular biology tool, the baculovirus display vector system (BDVS), allows combination of genotype with phenotype and thereby enables presentation of eukaryotic proteins on the viral envelope or capsid. Data have shown that the baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is a versatile tool for eukaryotic virus display. Insertion of heterologous peptides and/or proteins into the viral surface by utilizing the major envelope glycoprotein gp64, or foreign membrane‐derived counterparts, allows incorporation of the sequence of interest onto the surface of infected cells and virus particles. A number of strategies are being investigated in order to further develop the display capabilities of AcMNPV and improve the complexity of a library that may be accommodated. Numerous expression vectors for various approaches of surface display have already been developed. Further improvement of both insertion and selection strategies toward development of a refined tool for use in the creation of useful eukaryotic libraries is, however, needed. Here, the status of baculovirus display with respect to alteration of virus tropism, antigen presentation, transgene expression in mammalian cells, and development of eukaryotic libraries will be reviewed.
PLOS ONE | 2009
Johanna P. Laakkonen; Anna R. Mäkelä; Elina Kakkonen; Paula Turkki; Sari P. Kukkonen; Johan Peränen; Seppo Ylä-Herttuala; Kari J. Airenne; Christian Oker-Blom; Maija Vihinen-Ranta; Varpu Marjomäki
The prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus, an insect pathogen, holds great potential as a gene therapy vector. To develop transductional targeting and gene delivery by baculovirus, we focused on characterizing the nature and regulation of its uptake in human cancer cells. Baculovirus entered the cells along fluid-phase markers from the raft areas into smooth-surfaced vesicles devoid of clathrin. Notably, regulators associated with macropinocytosis, namely EIPA, Pak1, Rab34, and Rac1, had no significant effect on viral transduction, and the virus did not induce fluid-phase uptake. The internalization and nuclear uptake was, however, affected by mutants of RhoA, and of Arf6, a regulator of clathrin-independent entry. Furthermore, the entry of baculovirus induced ruffle formation and triggered the uptake of fluorescent E. coli bioparticles. To conclude, baculovirus enters human cells via a clathrin-independent pathway, which is able to trigger bacterial uptake. This study increases our understanding of virus entry strategies and gives new insight into baculovirus-mediated gene delivery in human cells.
Combinatorial Chemistry & High Throughput Screening | 2008
Anna R. Mäkelä; Christian Oker-Blom
High throughput screening is a core technology in drug discovery. During the past decade, several strategies have been developed to screen (poly)peptide libraries for diverse applications including disease diagnosis and profiling, imaging, as well as therapy. The recently established baculovirus display vector system (BDVS) represents a eukaryotic screening platform that combines the positive attributes of both cell and virus-based display approaches, allowing presentation of complex polypeptides on cellular and viral surfaces. Compared to microbial display systems, the BDVS has the advantage of correct protein folding and post-translational modifications similar to those in mammals, facilitating expression and analysis of proteins with therapeutic interest. The applicability of the system is further expanded by the availability of genetically engineered insect cell lines capable of performing e.g. mammalianized glycosylation in combination with high level of expression. In addition to insect cells, baculovirus can mediate delivery and expression of heterologous genes in a broad spectrum of primary and established mammalian cells. Currently, a variety of baculovirus-based assays aiming at routine high throughput identification of agents targeting cell surface receptors or studies on ligand-receptor interactions are under construction. Here, the advancements and future prospects of the baculovirus display technologies with emphasis on molecular screening and drug delivery applications using insect cell display, mammalian cell display, and virion display are described.
Journal of Gene Medicine | 2008
Anna R. Mäkelä; Juulia Enbäck; Johanna P. Laakkonen; Maija Vihinen-Ranta; Pirjo Laakkonen; Christian Oker-Blom
Tumor‐associated cells and vasculature express attractive molecular markers for site‐specific vector targeting. To attain tumor‐selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP‐1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G‐protein.
PLOS ONE | 2012
Annika Järviluoma; Tomas Strandin; Sebastian Lülf; Jérôme Bouchet; Anna R. Mäkelä; Matthias Geyer; Serge Benichou; Kalle Saksela
Monoclonal and recombinant antibodies are ubiquitous tools in diagnostics, therapeutics, and biotechnology. However, their biochemical properties lack optimal robustness, their bacterial production is not easy, and possibilities to create multifunctional fusion proteins based on them are limited. Moreover, the binding affinities of antibodies towards their antigens are suboptimal for many applications where they are commonly used. To address these issues we have made use of the concept of creating high binding affinity based on multivalent target recognition via exploiting some of the best features of immunoglobulins (Ig) and non-Ig-derived ligand-binding domains. We have constructed a small protein, named Neffin, comprised of a 118 aa llama Ig heavy chain variable domain fragment (VHH) fused to a ligand-tailored 57 aa SH3 domain. Neffin could be readily produced in large amounts (>18 mg/L) in the cytoplasm of E. coli, and bound with a subpicomolar affinity (Kd 0.54 pM) to its target, the HIV-1 Nef protein. When expressed in human cells Neffin could potently inhibit Nef function. Similar VHH-SH3 fusion proteins could be targeted against many other proteins of interest and could have widespread use in diverse medical and biotechnology applications where biochemical robustness and strong binding affinity are required.
Journal of Nanobiotechnology | 2006
Leona Gilbert; Jouni Toivola; Outi Välilehto; Taija Saloniemi; Claire Cunningham; Daniel White; Anna R. Mäkelä; Eila Korhonen; Matti Vuento; Christian Oker-Blom
Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs). The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles.
Journal of Virological Methods | 2008
Patrik O. Michel; Anna R. Mäkelä; Eila Korhonen; Jouni Toivola; Lea Hedman; Maria Söderlund-Venermo; Klaus Hedman; Christian Oker-Blom
Human parvovirus B19 is an autonomously replicating human pathogen with a specific tropism for human erythroid progenitor cells. There is an interest in producing empty nucleocapsids of B19 as they can be used as tools in molecular biology and diagnostics. Native B19 virus particles are formed from two structural viral proteins, VP1 and VP2. The VP2 protein alone is able to self assemble and consequently form virus-like particles (VLPs) in heterologous expression systems. Purification of recombinant VLPs has been conducted using various traditional methods. These include laborious and time-consuming, e.g. cesium chloride or sucrose gradient ultracentrifugation steps, allowing limited working volumes to be processed. Therefore, an alternative purification method enabling process scale-up was developed and evaluated. Polyhistidine-tagged versions of B19 VP1 and VP2 capsid proteins were engineered and produced using the baculovirus expression system. The recombinant protein products were purified by immobilized metal-ion affinity chromatography (IMAC) and analyzed by SDS-PAGE, immunoblotting, electron microscopy, and enzyme-linked immunosorbent assays. Further, the immunological properties of the recombinant proteins were evaluated. The results showed that the VP2 fusion protein assembled into capsid-like structures and that both VP1 and VP2 following purification by IMAC have potential as antigens for diagnosis of a B19 infection.
Journal of Biotechnology | 2008
Anna R. Mäkelä; Ale Närvänen; Christian Oker-Blom
Baculovirus represents a multifunctional platform with potential for biomedical applications including disease therapies. The importance of F3, a tumor-homing peptide, in baculovirus transduction was previously recognized by the ability of F3 to augment viral binding and gene delivery to human cancer cells following display on the viral envelope. Here, F3 was utilized as a molecular tool to expand understanding of the poorly characterized baculovirus-mammalian cell interactions. Baculovirus-mediated transduction of HepG2 hepatocarcinoma cells was strongly inhibited by coincubating the virus with synthetic F3 or following incorporation of F3 into viral nucleocapsid by genetic engineering, the former suggesting direct interaction of the soluble peptide with the virus particles. Since internalization and nuclear accumulation of the virus were significantly inhibited or delayed, but the kinetics of viral binding, initial uptake, and endosomal release were unaffected, F3 likely interferes with cytoplasmic trafficking and subsequent nuclear transport of the virus. A polyclonal antibody raised against nucleolin, the internalizing receptor of F3, failed to inhibit cellular binding, but considerably reduced viral transduction efficiency, proposing the involvement of nucleolin in baculovirus entry. Together, these results render the F3 peptide a tool for elucidating the mechanism and molecular details conferring to baculovirus-mediated gene transduction in mammalian cells.
Physical Biology | 2009
Kirsi I. Pakkanen; Emppu Salonen; Anna R. Mäkelä; Christian Oker-Blom; Ilpo Vattulainen; Matti Vuento
In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter S(CD) as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.