Johanna P. Laakkonen
University of Eastern Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johanna P. Laakkonen.
PLOS ONE | 2009
Johanna P. Laakkonen; Anna R. Mäkelä; Elina Kakkonen; Paula Turkki; Sari P. Kukkonen; Johan Peränen; Seppo Ylä-Herttuala; Kari J. Airenne; Christian Oker-Blom; Maija Vihinen-Ranta; Varpu Marjomäki
The prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus, an insect pathogen, holds great potential as a gene therapy vector. To develop transductional targeting and gene delivery by baculovirus, we focused on characterizing the nature and regulation of its uptake in human cancer cells. Baculovirus entered the cells along fluid-phase markers from the raft areas into smooth-surfaced vesicles devoid of clathrin. Notably, regulators associated with macropinocytosis, namely EIPA, Pak1, Rab34, and Rac1, had no significant effect on viral transduction, and the virus did not induce fluid-phase uptake. The internalization and nuclear uptake was, however, affected by mutants of RhoA, and of Arf6, a regulator of clathrin-independent entry. Furthermore, the entry of baculovirus induced ruffle formation and triggered the uptake of fluorescent E. coli bioparticles. To conclude, baculovirus enters human cells via a clathrin-independent pathway, which is able to trigger bacterial uptake. This study increases our understanding of virus entry strategies and gives new insight into baculovirus-mediated gene delivery in human cells.
Cellular Microbiology | 2008
Johanna P. Laakkonen; Minna U. Kaikkonen; Paula H. A. Ronkainen; Teemu O. Ihalainen; Einari A. Niskanen; Maija Häkkinen; Mirka Salminen; Markku S. Kulomaa; Seppo Ylä-Herttuala; Kari J. Airenne; Maija Vihinen-Ranta
Baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), has the ability to transduce mammalian cell lines without replication. The general objective of this study was to detect the transcription and expression of viral immediate‐early genes in human cells and to examine the interactions between viral components and subnuclear structures. Viral capsids were seen in large, discrete foci in nuclei of both dividing and non‐dividing human cells. Concurrently, the transcription of viral immediate‐early transregulator genes (ie‐1, ie‐2) and translation of IE‐2 protein were detected. Quantitative microscopy imaging and analysis showed that virus transduction altered the size of promyelocytic leukaemia nuclear bodies, which are suggested to be involved in replication and transcription of various viruses. Furthermore, altered distribution of the chromatin marker Draq5™ and histone core protein (H2B) in transduced cells indicated that the virus was able to induce remodelling of the host cell chromatin. To conclude, this study shows that the non‐replicative insect virus, baculovirus and its proteins can induce multiple changes in the cellular machinery of human cells.
Journal of Gene Medicine | 2008
Anna R. Mäkelä; Juulia Enbäck; Johanna P. Laakkonen; Maija Vihinen-Ranta; Pirjo Laakkonen; Christian Oker-Blom
Tumor‐associated cells and vasculature express attractive molecular markers for site‐specific vector targeting. To attain tumor‐selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP‐1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G‐protein.
PLOS ONE | 2014
Mikko P. Turunen; Tiia Husso; Haja Musthafa; Svetlana Laidinen; Galina Dragneva; Nihay Laham-Karam; Sanna Honkanen; Anne Paakinaho; Johanna P. Laakkonen; Erhe Gao; Maija Vihinen-Ranta; Timo Liimatainen; Seppo Ylä-Herttuala
“Epigenetherapy” alters epigenetic status of the targeted chromatin and modifies expression of the endogenous therapeutic gene. In this study we used lentiviral in vivo delivery of small hairpin RNA (shRNA) into hearts in a murine infarction model. shRNA complementary to the promoter of vascular endothelial growth factor (VEGF-A) was able to upregulate endogenous VEGF-A expression. Histological and multiphoton microscope analysis confirmed the therapeutic effect in the transduced hearts. Magnetic resonance imaging (MRI) showed in vivo that the infarct size was significantly reduced in the treatment group 14 days after the epigenetherapy. Importantly, we show that promoter-targeted shRNA upregulates all isoforms of endogenous VEGF-A and that an intact hairpin structure is required for the shRNA activity. In conclusion, regulation of gene expression at the promoter level is a promising new treatment strategy for myocardial infarction and also potentially useful for the upregulation of other endogenous genes.
Journal of Virology | 2013
Kaisa-Emilia Makkonen; Paula Turkki; Johanna P. Laakkonen; Seppo Ylä-Herttuala; Varpu Marjomäki; Kari J. Airenne
ABSTRACT Baculoviruses are insect-specific viruses commonly found in nature. They are not able to replicate in mammalian cells but can transduce them when equipped with an appropriate mammalian cell active expression cassette. Although the viruses have been studied in several types of mammalian cells from different origins, the receptor that baculovirus uses to enter or interact with mammalian cells has not yet been identified. Due to the wide tropism of the virus, the receptor has been suggested to be a generally found cell surface molecule. In this article, we investigated the interaction of baculovirus and mammalian cell surface heparan sulfate proteoglycans (HSPG) in more detail. Our data show that baculovirus requires HSPG sulfation, particularly N- and 6-O-sulfation, to bind to and transduce mammalian cells. According to our results, baculovirus binds specifically to syndecan-1 (SDC-1) but does not interact with SDC-2 to SDC-4 or with glypicans. Competition experiments performed with SDC-1 antibody or recombinant SDC-1 protein inhibited baculovirus binding, and SDC-1 overexpression enhanced baculovirus-mediated transduction. In conclusion, we show that SDC-1, a commonly found cell surface HSPG molecule, has a role in the binding and entry of baculovirus in vertebrate cells. The results presented here reveal important aspects of baculovirus entry and can serve as a basis for next-generation baculovirus vector development for gene delivery.
Journal of Gene Medicine | 2014
Tytteli Anni Kaarina Turunen; Johanna P. Laakkonen; Laura Alasaarela; Kari J. Airenne; Seppo Ylä-Herttuala
A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid‐based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors.
Journal of Biotechnology | 2010
Anssi J. Mähönen; Kaisa-Emilia Makkonen; Johanna P. Laakkonen; Teemu O. Ihalainen; Sari P. Kukkonen; Minna U. Kaikkonen; Maija Vihinen-Ranta; Seppo Ylä-Herttuala; Kari J. Airenne
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Science Signaling | 2017
Tomohiro Aoki; Juhana Frösen; Miyuki Fukuda; Kana Bando; Go Shioi; Keiichi Tsuji; Eliisa Ollikainen; Kazuhiko Nozaki; Johanna P. Laakkonen; Shuh Narumiya
Inhibition of prostaglandin E2 signaling in macrophages may be a pharmacological option for treating intracranial aneurysms. A receptor target for intracranial aneurysms The rupture of intracranial aneurysms is life-threatening. Unfortunately, surgery is currently the only therapeutic option. Inflammation mediated by macrophages that infiltrate the arterial wall both causes intracranial aneurysms and promotes their progression. Aoki et al. delineated a self-amplifying signaling pathway in macrophages that would be expected to aggravate the inflammation that underlies the formation and progression of intracranial aneurysms. They found that signaling through the prostaglandin E receptor subtype 2 (EP2) activated the transcription factor NF-κB to induce the expression of the genes encoding COX-2, the enzyme that synthesizes the ligand for EP2, and MCP-1, an attractant for macrophages. Administering an EP2 antagonist to rats prevented the formation and progression of intracranial aneurysms, suggesting that targeting the EP2 receptor could be a pharmacological alternative to treat developing intracranial aneurysms. Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor κB (NF-κB), and inflammatory signaling involving prostaglandin E2 (PGE2) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-κB activation during intracranial aneurysm development in mice showed that NF-κB was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an IκBα mutant that restricts NF-κB activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-κB activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor–α (TNF-α) to activate NF-κB and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.
Journal of Virology | 2011
Outi Paloheimo; Teemu O. Ihalainen; Sisko Tauriainen; Outi Välilehto; Sanna Kirjavainen; Einari A. Niskanen; Johanna P. Laakkonen; Heikki Hyöty; Maija Vihinen-Ranta
ABSTRACT Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses.
Journal of Virology | 2013
Paula Turkki; Kaisa-Emilia Makkonen; Moona Huttunen; Johanna P. Laakkonen; Seppo Ylä-Herttuala; Kari J. Airenne; Varpu Marjomäki
ABSTRACT Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line. All the cell lines contained high levels of viral receptors on their surfaces, and virus binding was shown to be efficient. However, in nonpermissive cells, BV and its receptor, syndecan 1, were unable to internalize in the cells and formed large aggregates near the cell surface. Accordingly, EV1 had a low infection rate in nonpermissive cells but was still able to internalize the cells, suggesting that the postinternalization step of the virus was impaired. The nonpermissive and permissive cell lines showed differential expression of syntenin, filamentous actin, vimentin, and phosphorylated protein kinase C subtype α (pPKCα). The nonpermissive nature of the cells could be modulated by the choice of culture medium. RPMI medium could partially rescue infection/transduction and concomitantly showed lower syntenin expression, a modified vimentin network, and altered activities of PKC subtypes PKCα and PKCε. The observed changes in PKCα and PKCε activation caused alterations in the vimentin organization, leading to efficient BV transduction and EV1 infection. This study identifies PKCα, PKCε, and vimentin as key factors affecting efficient infection and transduction by EV1 and BV, respectively.