Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna R. Moore is active.

Publication


Featured researches published by Anna R. Moore.


The Journal of Neuroscience | 2007

Human Cortical Neurons Originate from Radial Glia and Neuron-Restricted Progenitors

Zhicheng Mo; Anna R. Moore; Radmila Filipovic; Yasuhiro Ogawa; Ikenaka Kazuhiro; Srdjan D. Antic; Nada Zecevic

Understanding the molecular and physiological determinants of cortical neuronal progenitor cells is essential for understanding the development of the human brain in health and in disease. We used surface marker fucose N-acetyl lactosamine (LeX) (also known as CD15) to isolate progenitor cells from the cortical ventricular/subventricular zone of human fetal brain at the second trimester of gestation and to study their progeny in vitro. LeX+ cells had typical bipolar morphology, radial orientation, and antigen profiles, characterizing them as a subtype of radial glia (RG) cells. Four complementary experimental techniques (clonal analysis, immunofluorescence, transfection experiments, and patch-clamp recordings) indicated that this subtype of RG generates mainly astrocytes but also a small number of cortical neurons. The neurogenic capabilities of RGs were both region and stage dependent. Present results provide the first direct evidence that RGs in the human cerebral cortex serve as neuronal progenitors. Simultaneously, another progenitor subtype was identified as proliferating cells labeled with neuronal (β-III-tubulin and doublecortin) but not RG markers [GFAP, vimentin, and BLBP (brain lipid-binding protein)]. Proliferative and antigenic characteristics of these cells suggested their neuron-restricted progenitor status. In summary, our in vitro study suggests that diverse populations of cortical progenitor cells, including multipotent RGs and neuron-restricted progenitors, contribute differentially to cortical neurogenesis at the second trimester of gestation in human cerebral cortex.


Journal of Neuroscience Research | 2010

The Decade of the Dendritic NMDA Spike

Srdjan D. Antic; Wen-Liang Zhou; Anna R. Moore; Shaina M. Short

In the field of cortical cellular physiology, much effort has been invested in understanding thick apical dendrites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an electrical signal (“NMDA spike”) that is specific for these branches. Basal, oblique, and apical tuft dendrites receive a high density of glutamatergic synaptic contacts. Synchronous activation of 10–50 neighboring glutamatergic synapses triggers a local dendritic regenerative potential, NMDA spike/plateau, which is characterized by significant local amplitude (40–50 mV) and an extraordinary duration (up to several hundred milliseconds). The NMDA plateau potential, when it is initiated in an apical tuft dendrite, is able to maintain a good portion of that tuft in a sustained depolarized state. However, if NMDA‐dominated plateau potentials originate in proximal segments of basal dendrites, they regularly bring the neuronal cell body into a sustained depolarized state, which resembles a cortical Up state. At each dendritic initiation site (basal, oblique, and tuft) an NMDA spike creates favorable conditions for causal interactions of active synaptic inputs, including the spatial or temporal binding of information, as well as processes of short‐term and long‐term synaptic modifications (e.g., long‐term potentiation or long‐term depression). Because of their strong amplitudes and durations, local dendritic NMDA spikes make up the cellular substrate for multisite independent subunit computations that enrich the computational power and repertoire of cortical pyramidal cells. We propose that NMDA spikes are likely to play significant roles in cortical information processing in awake animals (spatiotemporal binding, working memory) and during slow‐wave sleep (neuronal Up states, consolidation of memories).


Cerebral Cortex | 2009

Electrical Excitability of Early Neurons in the Human Cerebral Cortex during the Second Trimester of Gestation

Anna R. Moore; Radmila Filipovic; Zhicheng Mo; Matthew N. Rasband; Nada Zecevic; Srdjan D. Antic

Information about development of the human cerebral cortex (proliferation, migration, and differentiation of neurons) is largely based on postmortem histology. Physiological properties of developing human cortical neurons are difficult to access experimentally and therefore remain largely unexplored. Animal studies have shown that information about the arousal of electrical activity in individual cells within fundamental cortical zones (subventricular zone [SVZ], intermediate zone, subplate [SP], and cortical plate [CP]) is necessary for understanding normal brain development. Here we ask where, in what cortical zone, and when, in what gestational week (gw), human neurons acquire the ability to generate nerve impulses (action potentials [APs]). We performed electrical recordings from individual cells in acute brain slices harvested postmortem from the human fetal cerebral cortex (16-22 gw). Tetrodotoxin-sensitive Na(+) current occurs more frequently among CP cells and with significantly greater peak amplitudes than in SVZ. As early as 16 gw, a relatively small population of CP neurons (27%) was able to generate sodium APs upon direct current injection. Neurons located in the SP exhibited the highest level of cellular differentiation, as judged by their ability to fire repetitive APs. At 19 gw, a fraction of human CP and SP neurons possess beta IV spectrin-positive axon initial segments populated with voltage-gated sodium channels (PanNav). These results yield the first physiological characterization of developing human fetal cortical neurons with preserved morphologies in intact surrounding brain tissue.


The Neuroscientist | 2008

Radial Glia Cells in the Developing Human Brain

Brian M. Howard; Zhicheng Mo; Radmila Filipovic; Anna R. Moore; Srdjan D. Antic; Nada Zecevic

Human radial glia (RG) share many of the features described in rodents, but also have a number of characteristics unique to the human brain. Results obtained from different mammalian species including human and non-human primates reveal differences in the involvement of RG in neurogenesis and oligodendrogenesis and in the timing of the initial expression of typical RG immunomarkers. A common problem in studying the human brain is that experimental procedures using modern molecular and genetic methods, such as in vivo transduction with retroviruses or creation of knockout or transgenic mutants, are not possible. Nevertheless, abundant and valuable information about the development of the human brain has been revealed using postmortem human material. Additionally, a combination and spectrum of in vitro techniques are used to gain knowledge about normal developmental processes in the human brain, including better understanding of RG as progenitor cells. Molecular and functional characterization of multipotent progenitors, such as RG, is important for future cell replacement therapies in neurological and psychiatric disorders, which are often resistant to conventional treatments. The protracted time of development and larger size of the human brain could provide insight into processes that may go unnoticed in the much smaller rodent cortex, which develops over a much shorter period. With that in mind, we summarize results on the role of RG in the human fetal brain. NEUROSCIENTIST 14(5):459—473, 2008. DOI: 10.1177/1073858407313512


The Journal of Neuroscience | 2011

Spontaneous electrical activity in the human fetal cortex in vitro.

Anna R. Moore; Wen-Liang Zhou; Igor Jakovcevski; Nada Zecevic; Srdjan D. Antic

Our knowledge about the developing human cerebral cortex is based on the analysis of fixed postmortem material. Here we use electrical recordings from unfixed human postmortem tissue to characterize the synaptic physiology and spontaneous network activity of pioneer cortical neurons (“subplate neurons”). Our electrophysiological experiments show that functional glutamate or GABA ionotropic receptors are expressed on human subplate (SP) neurons as early as 20 gestational weeks. Extracellular (synaptic) stimulations evoked postsynaptic potentials in a very small fraction of SP neurons, suggesting that functional synaptic contacts are rare at midgestation. Although synaptic inputs were scarce, we regularly observed spontaneous (unprovoked) electrical activity among human SP neurons, comprised of sustained plateau depolarizations and bursts of action potential firing, which resembled cortical UP and DOWN states in the adult neocortex. Plateau depolarizations and bursts of action potential firing are thought to depend on the mature morphology and physiology of adult cortical network. However, our current data reveal that similar cortical rhythm is generated by a very immature ensemble of human fetal neurons. In the relative absence of sensory inputs, as in development in utero, or in slow-wave sleep (i.e., throughout the entire lifespan), the spontaneous slow oscillatory pattern (UP and DOWN states) is a fundamental aspect of human cortical physiology.


The Journal of Neuroscience | 2013

The Class 4 Semaphorin Sema4D Promotes the Rapid Assembly of GABAergic Synapses in Rodent Hippocampus

Marissa S. Kuzirian; Anna R. Moore; Emily K. Staudenmaier; Roland H. Friedel; Suzanne Paradis

Proper circuit function in the mammalian nervous system depends on the precise assembly and development of excitatory and inhibitory synaptic connections between neurons. Through a loss-of-function genetic screen in cultured hippocampal neurons, we previously identified the class 4 Semaphorin Sema4D as being required for proper GABAergic synapse development. Here we demonstrate that Sema4D is sufficient to promote GABAergic synapse formation in rodent hippocampus and investigate the kinetics of this activity. We find that Sema4D treatment of rat hippocampal neurons increases the density of GABAergic synapses as detected by immunocytochemistry within 30 min, much more rapidly than has been previously described for a prosynaptogenic molecule, and show that this effect is dependent on the Sema4D receptor PlexinB1 using PlxnB1−/− mice. Live imaging studies reveal that Sema4D elicits a rapid enhancement (within 10 min) in the rate of addition of synaptic proteins. Therefore, we demonstrate that Sema4D, via PlexinB1, acts to initiate synapse formation by recruiting molecules to both the presynaptic and the postsynaptic terminals; these nascent synapses subsequently become fully functional by 2 h after Sema4D treatment. In addition, acute treatment of an organotypic hippocampal slice epilepsy model with Sema4D reveals that Sema4D rapidly and dramatically alters epileptiform activity, which is consistent with a Sema4D-mediated shift in the balance of excitation and inhibition within the circuit. These data demonstrate an ability to quickly assemble GABAergic synapses in response to an appropriate signal and suggest a potential area of exploration for the development of novel antiepileptic drugs.


The Journal of Neuroscience | 2014

Rem2 Is an Activity-Dependent Negative Regulator of Dendritic Complexity In Vivo

Amy E. Ghiretti; Anna R. Moore; Rebecca G. Brenner; Liang-Fu Chen; Anne E. West; Nelson C. Lau; Stephen D. Van Hooser; Suzanne Paradis

A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.


Stem Cells and Development | 2011

Physiological properties of neurons derived from human embryonic stem cells using a dibutyryl cyclic AMP-based protocol.

Glenn S. Belinsky; Anna R. Moore; Shaina M. Short; Matthew T. Rich; Srdjan D. Antic

Neurons derived from human embryonic stem cells hold promise for the therapy of neurological diseases. Quality inspection of human embryonic stem cell-derived neurons has often been based on immunolabeling for neuronal markers. Here we put emphasis on their physiological properties. Electrophysiological measurements were carried out systematically at different stages of neuronal in vitro development, including the very early stage, neuroepithelial rosettes. Developing human neurons are able to generate action potentials (APs) as early as 10 days after the start of differentiation. Tyrosine hydroxylase (TH)-positive (putative dopaminergic, DA) neurons tend to aggregate into clumps, and their overall yield per coverslip is relatively low (8.3%) because of areas void of DA neurons. On the same in vitro day, neighboring neurons can be in very different stages of differentiation, including repetitive AP firing, single full-size AP, and abortive AP. Similarly, the basic electrophysiological parameters (resting membrane potential, input resistance, peak sodium, and peak potassium currents) are scattered in a wide range. Visual appearance of differentiating neurons, and number of primary and secondary dendrites cannot be used to predict the peak sodium current or AP firing properties of cultured neurons. Approximately 13% of neurons showed evidence of hyperpolarization-induced current (I(h)), a characteristic of DA neurons; however, no neurons with repetitive APs showed I(h). The electrophysiological measurements thus indicate that a standard DA differentiation (dibutyryl cyclic AMP-based) protocol, applied for 2-5 weeks, produces a heterogeneous ensemble of mostly immature neurons. The overall quality of human neurons under present conditions (survival factors were not used) begins to deteriorate after 12 days of differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex

Anna R. Moore; Wen-Liang Zhou; Carissa L. Sirois; Glenn S. Belinsky; Nada Zecevic; Srdjan D. Antic

Significance Young neurons require occasional bursts of action-potential firing to maintain intracellular processes, to drive gene expression, to indicate their presence in a new location, and to attract and keep synaptic contacts. While in the adult cortex electrical activity is driven by synaptic inputs, during early cortical development these synaptic inputs are largely absent. In the absence of synaptic connections and sensory experience, human neurons use an energetically favorable membrane mechanism for generating and maintaining electrical activity: connexin hemichannels. The spontaneous flickering of connexin hemichannels produces depolarizing events (often crowned with bursts of action potentials) to help establish early electrical communication in young subplate neurons. This type of activity dominates the human cortical wall 5 months before birth. Before the human cortex is able to process sensory information, young postmitotic neurons must maintain occasional bursts of action-potential firing to attract and keep synaptic contacts, to drive gene expression, and to transition to mature membrane properties. Before birth, human subplate (SP) neurons are spontaneously active, displaying bursts of electrical activity (plateau depolarizations with action potentials). Using whole-cell recordings in acute cortical slices, we investigated the source of this early activity. The spontaneous depolarizations in human SP neurons at midgestation (17–23 gestational weeks) were not completely eliminated by tetrodotoxin—a drug that blocks action potential firing and network activity—or by antagonists of glutamatergic, GABAergic, or glycinergic synaptic transmission. We then turned our focus away from standard chemical synapses to connexin-based gap junctions and hemichannels. PCR and immunohistochemical analysis identified the presence of connexins (Cx26/Cx32/Cx36) in the human fetal cortex. However, the connexin-positive cells were not found in clusters but, rather, were dispersed in the SP zone. Also, gap junction-permeable dyes did not diffuse to neighboring cells, suggesting that SP neurons were not strongly coupled to other cells at this age. Application of the gap junction and hemichannel inhibitors octanol, flufenamic acid, and carbenoxolone significantly blocked spontaneous activity. The putative hemichannel antagonist lanthanum alone was a potent inhibitor of the spontaneous activity. Together, these data suggest that connexin hemichannels contribute to spontaneous depolarizations in the human fetal cortex during the second trimester of gestation.


Stem Cells and Development | 2013

Dopamine Receptors in Human Embryonic Stem Cell Neurodifferentiation

Glenn S. Belinsky; Carissa L. Sirois; Matthew T. Rich; Shaina M. Short; Anna R. Moore; Sarah E. Gilbert; Srdjan D. Antic

We tested whether dopaminergic drugs can improve the protocol for in vitro differentiation of H9 human embryonic stem cells (hESCs) into dopaminergic neurons. The expression of 5 dopamine (DA) receptor subtypes (mRNA and protein) was analyzed at each protocol stage (1, undifferentiated hESCs; 2, embryoid bodies [EBs]; 3, neuroepithelial rosettes; 4, expanding neuroepithelium; and 5, differentiating neurons) and compared to human fetal brain (gestational week 17-19). D2-like DA receptors (D2, D3, and D4) predominate over the D1-like receptors (D1 and D5) during derivation of neurons from hESCs. D1 was the receptor subtype with the lowest representation in each protocol stage (Stages 1-5). D1/D5-agonist SKF38393 and D2/D3/D4-agonist quinpirole (either alone or combined) evoked Ca(2+) responses, indicating functional receptors in hESCs. To identify when receptor activation causes a striking effect on hESC neurodifferentiation, and what ligands and endpoints are most interesting, we varied the timing, duration, and drug in the culture media. Dopaminergic agonists or antagonists were administered either early (Stages 1-3) or late (Stages 4-5). Early DA exposure resulted in more neuroepithelial colonies, more neuronal clusters, and more TH(+) clusters. The D1/D5 antagonist SKF83566 had a strong effect on EB morphology and the expression of midbrain markers. Late exposure to DA resulted in a modest increase in TH(+) neuron clusters (∼75%). The increase caused by DA did not occur in the presence of dibutyryl cAMP (dbcAMP), suggesting that DA acts through the cAMP pathway. However, a D2-antagonist (L741) decreased TH(+) cluster counts. Electrophysiological parameters of the postmitotic neurons were not significantly affected by late DA treatment (Stages 4-5). The mRNA of mature neurons (VGLUT1 and GAD1) and the midbrain markers (GIRK2, LMX1A, and MSX1) were lower in hESCs treated by DA or a D2-antagonist. When hESCs were neurodifferentiated on PA6 stromal cells, DA also increased expression of tyrosine hydroxylase. Although these results are consistent with DAs role in potentiating DA neurodifferentiation, dopaminergic treatments are generally less efficient than dbcAMP alone.

Collaboration


Dive into the Anna R. Moore's collaboration.

Top Co-Authors

Avatar

Srdjan D. Antic

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nada Zecevic

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Zhou

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Glenn S. Belinsky

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaina M. Short

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge