Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Rohrbach is active.

Publication


Featured researches published by Anna Rohrbach.


empirical methods in natural language processing | 2016

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

Akira Fukui; Dong Huk Park; Daylen Yang; Anna Rohrbach; Trevor Darrell; Marcus Rohrbach

Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. We hypothesize that these methods are not as expressive as an outer product of the visual and textual vectors. As the outer product is typically infeasible due to its high dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively combine multimodal features. We extensively evaluate MCB on the visual question answering and grounding tasks. We consistently show the benefit of MCB over ablations without MCB. For visual question answering, we present an architecture which uses MCB twice, once for predicting attention over spatial features and again to combine the attended representation with the question representation. This model outperforms the state-of-the-art on the Visual7W dataset and the VQA challenge.


computer vision and pattern recognition | 2015

A dataset for Movie Description

Anna Rohrbach; Marcus Rohrbach; Niket Tandon; Bernt Schiele

Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length HD movies. In addition we also collected the aligned movie scripts which have been used in prior work and compare the two different sources of descriptions. In total the MPII Movie Description dataset (MPII-MD) contains a parallel corpus of over 68K sentences and video snippets from 94 HD movies. We characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are far more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production.


european conference on computer vision | 2016

Grounding of Textual Phrases in Images by Reconstruction

Anna Rohrbach; Marcus Rohrbach; Ronghang Hu; Trevor Darrell; Bernt Schiele

Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.


german conference on pattern recognition | 2014

Coherent Multi-sentence Video Description with Variable Level of Detail

Anna Rohrbach; Marcus Rohrbach; Wei Qiu; Annemarie Friedrich; Manfred Pinkal; Bernt Schiele

Humans can easily describe what they see in a coherent way and at varying level of detail. However, existing approaches for automatic video description focus on generating only single sentences and are not able to vary the descriptions’ level of detail. In this paper, we address both of these limitations: for a variable level of detail we produce coherent multi-sentence descriptions of complex videos. To understand the difference between detailed and short descriptions, we collect and analyze a video description corpus of three levels of detail. We follow a two-step approach where we first learn to predict a semantic representation (SR) from video and then generate natural language descriptions from it. For our multi-sentence descriptions we model across-sentence consistency at the level of the SR by enforcing a consistent topic. Human judges rate our descriptions as more readable, correct, and relevant than related work.


german conference on pattern recognition | 2015

The Long-Short Story of Movie Description

Anna Rohrbach; Marcus Rohrbach; Bernt Schiele

Generating descriptions for videos has many applications including assisting blind people and human-robot interaction. The recent advances in image captioning as well as the release of large-scale movie description datasets such as MPII-MD [28] and M-VAD [31] allow to study this task in more depth. Many of the proposed methods for image captioning rely on pre-trained object classifier CNNs and Long Short-Term Memory recurrent networks (LSTMs) for generating descriptions. While image description focuses on objects, we argue that it is important to distinguish verbs, objects, and places in the setting of movie description. In this work we show how to learn robust visual classifiers from the weak annotations of the sentence descriptions. Based on these classifiers we generate a description using an LSTM. We explore different design choices to build and train the LSTM and achieve the best performance to date on the challenging MPII-MD and M-VAD datasets. We compare and analyze our approach and prior work along various dimensions to better understand the key challenges of the movie description task.


International Journal of Computer Vision | 2016

Recognizing Fine-Grained and Composite Activities Using Hand-Centric Features and Script Data

Marcus Rohrbach; Anna Rohrbach; Michaela Regneri; Sikandar Amin; Mykhaylo Andriluka; Manfred Pinkal; Bernt Schiele

Activity recognition has shown impressive progress in recent years. However, the challenges of detecting fine-grained activities and understanding how they are combined into composite activities have been largely overlooked. In this work we approach both tasks and present a dataset which provides detailed annotations to address them. The first challenge is to detect fine-grained activities, which are defined by low inter-class variability and are typically characterized by fine-grained body motions. We explore how human pose and hands can help to approach this challenge by comparing two pose-based and two hand-centric features with state-of-the-art holistic features. To attack the second challenge, recognizing composite activities, we leverage the fact that these activities are compositional and that the essential components of the activities can be obtained from textual descriptions or scripts. We show the benefits of our hand-centric approach for fine-grained activity classification and detection. For composite activity recognition we find that decomposition into attributes allows sharing information across composites and is essential to attack this hard task. Using script data we can recognize novel composites without having training data for them.


computer vision and pattern recognition | 2017

A Dataset and Exploration of Models for Understanding Video Data through Fill-in-the-Blank Question-Answering

Tegan Maharaj; Nicolas Ballas; Anna Rohrbach; Aaron C. Courville; Chris Pal

While deep convolutional neural networks frequently approach or exceed human-level performance in benchmark tasks involving static images, extending this success to moving images is not straightforward. Video understanding is of interest for many applications, including content recommendation, prediction, summarization, event/object detection, and understanding human visual perception. However, many domains lack sufficient data to explore and perfect video models. In order to address the need for a simple, quantitative benchmark for developing and understanding video, we present MovieFIB, a fill-in-the-blank question-answering dataset with over 300,000 examples, based on descriptive video annotations for the visually impaired. In addition to presenting statistics and a description of the dataset, we perform a detailed analysis of 5 different models predictions, and compare these with human performance. We investigate the relative importance of language, static (2D) visual features, and moving (3D) visual features, the effects of increasing dataset size, the number of frames sampled, and of vocabulary size. We illustrate that: this task is not solvable by a language model alone, our model combining 2D and 3D visual information indeed provides the best result, all models perform significantly worse than human-level. We provide human evaluation for responses given by different models and find that accuracy on the MovieFIB evaluation corresponds well with human judgment. We suggest avenues for improving video models, and hope that the MovieFIB challenge can be useful for measuring and encouraging progress in this very interesting field.


computer vision and pattern recognition | 2017

Generating Descriptions with Grounded and Co-referenced People

Anna Rohrbach; Marcus Rohrbach; Siyu Tang; Seong Joon Oh; Bernt Schiele

Learning how to generate descriptions of images or videos received major interest both in the Computer Vision and Natural Language Processing communities. While a few works have proposed to learn a grounding during the generation process in an unsupervised way (via an attention mechanism), it remains unclear how good the quality of the grounding is and whether it benefits the description quality. In this work we propose a movie description model which learns to generate description and jointly ground (localize) the mentioned characters as well as do visual co-reference resolution between pairs of consecutive sentences/clips. We also propose to use weak localization supervision through character mentions provided in movie descriptions to learn the character grounding. At training time, we first learn how to localize characters by relating their visual appearance to mentions in the descriptions via a semi-supervised approach. We then provide this (noisy) supervision into our description model which greatly improves its performance. Our proposed description model improves over prior work w.r.t. generated description quality and additionally provides grounding and local co-reference resolution. We evaluate it on the MPII Movie Description dataset using automatic and human evaluation measures and using our newly collected grounding and co-reference data for characters.


european conference on computer vision | 2018

Textual Explanations for Self-Driving Vehicles

Jinkyu Kim; Anna Rohrbach; Trevor Darrell; John F. Canny; Zeynep Akata

Deep neural perception and control networks have become key components of self-driving vehicles. User acceptance is likely to benefit from easy-to-interpret textual explanations which allow end-users to understand what triggered a particular behavior. Explanations may be triggered by the neural controller, namely introspective explanations, or informed by the neural controller’s output, namely rationalizations. We propose a new approach to introspective explanations which consists of two parts. First, we use a visual (spatial) attention model to train a convolutional network end-to-end from images to the vehicle control commands, i.e., acceleration and change of course. The controller’s attention identifies image regions that potentially influence the network’s output. Second, we use an attention-based video-to-text model to produce textual explanations of model actions. The attention maps of controller and explanation model are aligned so that explanations are grounded in the parts of the scene that mattered to the controller. We explore two approaches to attention alignment, strong- and weak-alignment. Finally, we explore a version of our model that generates rationalizations, and compare with introspective explanations on the same video segments. We evaluate these models on a novel driving dataset with ground-truth human explanations, the Berkeley DeepDrive eXplanation (BDD-X) dataset. Code is available at https://github.com/JinkyuKimUCB/explainable-deep-driving.


International Journal of Computer Vision | 2017

Movie Description

Anna Rohrbach; Atousa Torabi; Marcus Rohrbach; Niket Tandon; Chris Pal; Hugo Larochelle; Aaron C. Courville; Bernt Schiele

Collaboration


Dive into the Anna Rohrbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor Darrell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Huk Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Dawn Song

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge