Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna S. Belloni is active.

Publication


Featured researches published by Anna S. Belloni.


Hypertension | 1996

Endothelin Adrenocortical Secretagogue Effect Is Mediated by the B Receptor in Rats

Anna S. Belloni; Gian Paolo Rossi; Paola G. Andreis; Giuliano Neri; Giovanna Albertin; Achille C. Pessina; Gastone G. Nussdorfer

We investigated the gene expression and localization of endothelin-1 (ET-1) receptor subtypes ET(A) and ET(B) in the rat adrenal cortex as well as their involvement in the corticosteroid secretagogue effect of ET-1 in vitro. Reverse transcription-polymerase chain reaction with primers specific for ET(A) and ET(B) cDNAs demonstrated the expression of both receptor genes in homogenates of adrenocortical tissue. However, in isolated zona glomerulosa and zona fasciculata cells, only ET(B) mRNA was detected. Autoradiographic examination of the selective displacement of 125I-ET-1 binding by BQ-123 and BQ-788 (specific ligands for ET(A) and ET(B), respectively) indicated that zona glomerulosa possesses both ET(A) and ET(B), whereas zona fasciculata is exclusively provided with ET(B). ET-1 enhanced in a concentration-dependent manner aldosterone and corticosterone secretions of dispersed zona glomerulosa and zona fasciculata cells, respectively. The ET(B) antagonist BQ-788 markedly reduced the secretory response of zona glomerulosa cells and completely suppressed that of zona fasciculata cells, whereas the ET(A) antagonist BQ-123 was ineffective. These findings indicate that in the rat, the adrenocortical secretagogue action of ET-1 is mediated by the ET(B) receptor subtype and that the ET(A) receptor is not directly involved in such an effect.


Journal of the American College of Cardiology | 2003

Cardiac fibrosis occurs early and involves endothelin and AT-1 receptors in hypertension due to endogenous angiotensin II.

Teresa Maria Seccia; Anna S. Belloni; Reinhold Kreutz; Martin Paul; Gastone G. Nussdorfer; Achille C. Pessina; Gian Paolo Rossi

OBJECTIVES We investigated if endothelin (ET)-1 and the renin-angiotensin-aldosterone system play a role in cardiac fibrosis. BACKGROUND Angiotensin II (Ang II) can induce cardiac fibrosis, but the underlying mechanisms are incompletely understood. METHODS Four-week-old transgenic (mRen2)27 rat (TGRen2) received for four weeks a placebo, the mixed ET(A)/ET(B) endothelin receptor antagonist bosentan, the angiotensin II type I receptor (AT-1) antagonist irbesartan, the ET(A) endothelin receptor antagonist BMS-182874, and a combined treatment with irbesartan plus BMS-182874. We measured collagen density on Sirius red-stained serial sections of the left ventricle (LV) with a photomicroscope equipped with specific software and assessed the gene expression of procollagen alpha1(I), atrial natriuretic peptide (ANP), transforming growth factor-beta 1 (TGFbeta1), endothelin converting enzyme, and ET(B) receptor. RESULTS In the placebo group, hypertension was associated with LV hypertrophy and cardiac fibrosis (LV weight: 4.0 +/- 0.3 mg/g body weight; collagen density: 2.21 +/- 0.16%), which were all prevented with irbesartan (2.3 +/- 0.1, 1.30 +/- 0.13, p < 0.001), but not with BMS-182874 (4.0 +/- 0.2, 2.41 +/- 0.22). Bosentan also prevented fibrosis (1.39 +/- 0.18) but not hypertension and LV hypertrophy (3.38 +/- 0.27). Combined irbesartan and BMS-182874 treatment prevented LV hypertrophy (2.9 +/- 0.1) but not fibrosis (2.52 +/- 0.16). Collagen density correlated (r = 0.414, p < 0.05) with plasma aldosterone levels. In TGRen2 with LV hypertrophy, the gene expression of ANP and ET(B) but not that of TGFbeta1 and procollagen alpha1(I) was increased. CONCLUSIONS In Ang II-dependent hypertension, cardiac fibrosis was associated with LV hypertrophy and was hindered by both mixed ET(A)/ET(B) blockade and AT-1 blockade. Only the latter treatment prevented both hypertension and LV hypertrophy. Thus, there is a dissociation between the mechanisms of cardiac fibrosis and hypertension, which do and do not entail ET-1, respectively.


International Review of Cytology-a Survey of Cell Biology | 2007

Leptin and the regulation of the hypothalamic-pituitary-adrenal axis.

Ludwik K. Malendowicz; Marcin Rucinski; Anna S. Belloni; Agnieszka Ziolkowska; Gastone G. Nussdorfer

Leptin, the product of the obesity gene (ob) predominantly secreted from adipocytes, plays a major role in the negative control of feeding and acts via a specific receptor (Ob-R), six isoforms of which are known at present. Evidence has been accumulated that leptin, like other peptides involved in the central regulation of food intake, controls the function of the hypothalamic-pituitary-adrenal (HPA) axis, acting on both its central and peripheral branches. Leptin, along with Ob-R, is expressed in the hypothalamus and pituitary gland, where it modulates corticotropin-releasing hormone and ACTH secretion, probably acting in an autocrine-paracrine manner. Only Ob-R is expressed in the adrenal gland, thereby making it likely that leptin affects it by acting as a circulating hormone. Although in vitro and in vivo findings could suggest a glucocorticoid secretagogue action in the rat, the bulk of evidence indicates that leptin inhibits steroid-hormone secretion from the adrenal cortex. In keeping with this, leptin was found to dampen the HPA axis response to many kinds of stress. In contrast, leptin enhances catecolamine release from the adrenal medulla. This observation suggests that leptin activates the sympathoadrenal axis and does not appear to agree with its above-mentioned antistress action. Leptin and/or Ob-R are also expressed in pituitary and adrenal tumors, but little is known about the role of this cytokine in the pathophysiology.


Journal of Clinical Investigation | 1994

Gene expression, localization, and characterization of endothelin A and B receptors in the human adrenal cortex.

Gian Paolo Rossi; Giovanna Albertin; Anna S. Belloni; Lucia Zanin; Maria Angela Biasolo; Tommaso Prayer-Galetti; Michael Bader; Gastone G. Nussdorfer; Giorgio Palù; Achille C. Pessina

Compelling evidence indicates that the endothelium-derived potent vasoconstrictor endothelin-1 (ET-1) stimulates aldosterone secretion by interacting with specific receptors. Although two different ET-1 receptors have been identified and cloned, the receptor subtype involved in mediating aldosterone secretion is still unknown. Accordingly, we wished to investigate whether the genes of ET-1 and of its receptors A and B are expressed in the normal human adrenal cortex. We designed specific primers for ET-1 and the ETA and ETB receptors genes and developed a reverse transcription polymerase chain reaction (RT-PCR) with chemiluminescent quantitation of the cDNA. In addition, we carried out 125I ET-1 displacement studies with cold ET-1, ET-3 and the specific ETA and ETB ligands BQ123 and sarafotoxin 6C. Localization of each receptor subtype was also investigated by autoradiography. Binding experiments were first individually analyzed by Scatchard and Hofstee plot and then coanalyzed by the nonlinear iterative curve fitting program Ligand. Histologically normal adrenal cortex tissue, obtained from kidney cancer patients (n = 7), and an aldosterone-producing adenoma (APA), which is histogenetically derived from the zona glomerulosa (ZG) cells, were studied. Results showed that the ET-1, ETA and ETB mRNA can be detected by RT-PCR in all adrenal cortices as well as in the APA. The best fitting of the 125I ET-1 displacement binding data was consistently provided by a two-site model both in the normal adrenal cortex (F = 22.1, P < 0.0001) and in the APA (F = 18.4, P < 0.0001). In the former the density (Bmax) of the ETA and ETB subtype was 2.6 +/- 0.5 pmol/mg protein (m +/- SEM) and 1.19 +/- 0.6, respectively. The dissociation constant (Kd) of ET-1, ET-3, S6C, and BQ-123 for each receptor subtype resulted to be within the range reported for human tissue for the ETA and ETB receptors. In the APA tissue the Bmax tended to be lower (1.33 and 0.8 pmol/mg protein, for the ETA and ETB, respectively) but the Kd were similar. Autoradiographic studies confirmed the presence of both receptor subtypes on the ZG as well as on APA cells. Thus, the genes of ET-1 and both its receptor subtypes ETA and ETB are actively transcribed in the human adrenal cortex. Furthermore, both receptor subtypes are translated into proteins in ZG and APA cells.


Journal of Investigative Medicine | 2003

Effects of Hyperbaric Oxygen on Proliferative and Apoptotic Activities and Reactive Oxygen Species Generation in Mouse Fibroblast 3T3/J2 Cell Line

Maria Teresa Conconi; Silvia Baiguera; Diego Guidolin; Claudio Furlan; Anna Michela Menti; Simonetta Vigolo; Anna S. Belloni; Pier Paolo Parnigotto; Gastone G. Nussdorfer

Background Hyperbaric oxygen (HBO) therapy is widely used to treat problem wounds associated with pathologic conditions compromising blood supply and tissue oxygenation because increased tissue oxygen levels enhance collagen synthesis, cell proliferation, and angiogenesis. However, little is known about the dose of hyperoxia needed to achieve optimal therapeutic effects. Moreover, HBO, by enhancing the production of reactive oxygen species (ROS), may also exert cytotoxic effects. In vitro models are simplified systems that may aid the development of treatment protocols with HBO. Hence, we have investigated the effects of HBO on the growth and ROS production of the 3T3/J2 fibroblast cell line in relation to the pressure and the duration of exposure. Methods 3T3/J2 fibroblasts were plated (5 × 103 cells/cm2) on six-well microtiter plates in phosphate buffered saline (PBS), put in a compression chamber, and exposed to 100% oxygen at a pressure of 1.0 or 2.5 atmosphere absolute (ATA) for 15, 30, 60, or 120 minutes. Then the cells were incubated in Dulbeccos modified minimum essential medium (DMEM) for 24, 48, or 72 hours, and at the end of the post-HBO incubation period, their number was determined. In other experiments, cells were detached just after HBO exposure, seeded on 60 mm Petri dishes, and cultured for 10 days in DMEM, and the colony forming units were counted. The effects of HBO exposure (2.5 ATA) on the apoptotic rate of cultured cells were investigated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. To measure ROS production, 60 minutes before HBO exposure, 2′,7′-dichlorofluorescin (DCF) diacetate (200 nmol/mL) was added to PBS, and after HBO exposure (2.5 ATA), cells were lysated, and fluorescence-emission intensity was measured and converted to μmol DCF/μg protein. Results At 1.0 ATA, all HBO exposures increased the proliferation rate of cultured fibroblasts and their clonal growth efficiency. At 2.5 ATA, 15-minute exposure to HBO was ineffective, whereas 30- and 60-minute exposures raised the proliferation rate and clonal growth efficiency. Conversely, a 120-minute exposure significantly decreased these parameters compared with control cultures. The exposure of cells to HBO at 2.5 ATA for 120 minutes raised the apoptotic rate of cultured fibroblasts, whereas shorter exposure times were ineffective. All exposure periods to HBO at 2.5 ATA enhanced ROS production from cultured fibroblasts. Conclusions Collectively, our findings allow us to conclude that (1) all of the exposure periods to HBO at 1.0 ATA or 30- and 60-minute periods at 2.5 ATA enhance cell growth, (2) 120-minute exposure to HBO at 2.5 ATA exerts a marked proapoptotic effect, and (3) no evident relationships occur between the effects of HBO on cell growth and ROS production.


Hypertension | 2007

Heterogeneity of Aldosterone-Producing Adenomas Revealed by a Whole Transcriptome Analysis

Livia Lenzini; Teresa Maria Seccia; Enrico Aldighieri; Anna S. Belloni; Paolo Bernante; Luisa Giuliani; Gastone G. Nussdorfer; Achille C. Pessina; Gian Paolo Rossi

Aldosterone-producing adenomas (APAs) are a common cause of arterial hypertension, but the underlying molecular mechanisms are unknown, although a transcriptional modulation of aldosterone synthase (CYP11B2) has been suggested. Aldosterone synthesis involves 2 main rate-limiting steps: cholesterol transport into mitochondria and CYP11B2 gene transcription. Evidence supports a role of Ca2+/calmodulin-dependent protein kinases (CAMKs) in the regulation of angiotensin II- and potassium-stimulated aldosterone production. CAMK-I mediates CYP11B2 transcription via cAMP response element binding protein and activating transcription factor 1 transcription factors and nuclear receptor Nur-related factor 1. CAMK-II affects cholesterol transport into mitochondria by acting on steroidogenic acute regulatory protein and/or cytoskeleton proteins. We analyzed the whole transcriptome of APAs as compared with a pool of normal human adrenocortical tissues. Based on steroidogenic enzyme gene expression profiles, we identified 2 APA subgroups: 1 featuring overexpression of CYP11B2, CAMK-I, 11-&bgr;-hydroxylase, 3-&bgr;-hydroxysteroid dehydrogenase, and 21-hydroxylase and the underexpression of CAMK-IIB and the other one with an opposite profile. The low CYP11B2 group exhibited a longer known duration of hypertension and a lower rate of long-term cure. Thus, aldosterone overproduction in APAs involves complex alterations of aldosterone synthesis regulation rather than simply increased aldosterone synthase gene expression. Whether the molecular signature of APA carries prognostic information is worth further investigation.


International Review of Cytology-a Survey of Cell Biology | 1997

The Role of Endothelins in the Paracrine Control of the Secretion and Growth of the Adrenal Cortex

Gastone G. Nussdorfer; Gian Paolo Rossi; Anna S. Belloni

Endothelins (ETs) are a family of vasoactive peptides (ET-1, ET-2, and ET-3) mainly secreted by vascular endothelium and widely distributed in the various body systems, where they play major autocrine/paracrine regulatory functions, acting via two subtypes of receptors (ETA and ETB): Adrenal cortex synthesizes and releases ETS and expresses both ETA and ETB. Zona glomerulosa possesses both ETA and ETB, whereas zona fasciculata/reticularis is almost exclusively provided with ETB. ETS exert a strong mineralocorticoid and a less intense glucocorticoid secretagogue action, mainly via ETB receptors. ETS also appear to enhance the growth and steroidogenic capacity of zona glomerulosa and to stimulate its proliferative activity. This trophic action of ETS is likely to be mediated mainly by ETA receptors. The intraadrenal release of ETS undergoes a multiple regulation, with the rise in blood flow rate and the local release of nitric oxide being the main stimulatory factors. Data are also available that indicate that ETS may also have a role in the pathophysiology of primary aldosteronism caused by adrenal adenomas and carcinomas.


Ophthalmic Research | 1989

Studies on the retina of the diabetic db/db mouse. I. Endothelial cell-pericyte ratio.

Edoardo Midena; Tatiana Segato; Sandra Radin; Giuseppe di Giorgio; Francesca Meneghini; Stefano Piermarocchi; Anna S. Belloni

The genetically diabetic db/db mouse is a model of type-2 diabetes, where nephropathy and neuropathy, but not retinopathy were observed. The authors studied the retinas (trypsin digestion technique) of 16 db/db mice and 16 age-matched litter mates (db/m; controls), divided into five age groups. They noted a marked increase in the ratio of endothelial cells to intramural pericytes in diabetic mice compared to controls. This increase resulted from a selective and highly significant loss of pericytes in db/db mice (p less than 0.05). Some strand-like and relatively acellular capillaries were also observed. The db/db mouse may represent an adequate model for studies on the pathogenesis of retinopathy.


Endocrine Research | 1998

Distribution and functional significance of angiotensin-II AT1-AND AT2-Receptor subtypes in the rat adrenal gland

Anna S. Belloni; Paola G. Andreis; Veronica Macchi; Giuseppe Gottardo; Ludwick K. Malendowicz; Gastone G. Nussdorfer

The distribution and the functional significance of angiotensin-II (ANG-II) receptor subtypes, AT1 and AT2, in the rat adrenal gland has been investigated in vitro. Autoradiographic assessment of the selective displacement of [125I]ANG-II binding by selective ligands of the two receptor subtypes indicated that zona glomerulosa (ZG) was provided with both AT1 and AT2, and adrenal medulla (AM) almost exclusively with AT2 receptors. ANG-II (10(-9) M) evoked a marked rise in the secretion of aldosterone by dispersed ZG cells and catecholamines by AM fragments. The selective AT1-receptor antagonist DuP753 blocked aldosterone response to ANG-II, while the selective AT2-receptor antagonist PD123319 was ineffective. Catecholamine response to ANG-II was inhibited by PD123319 and only moderately affected by high concentrations of DuP753. The selective AT2-receptor agonist CGP42112 did not change basal aldosterone release of ZG cells, but concentration-dependently enhanced basal catecholamine release by AM fragments. In light of these findings the conclusion is drawn that in the rat the aldosterone secretagogue effect of ANG-II is exclusively mediated by the AT1 receptors present in the ZG, while the catecholamine secretagogue action preminently involves the activation of AT2 receptor located on medullary chromaffin cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Blockade of Angiotensin II Type 1 Receptor and Not of Endothelin Receptor Prevents Hypertension and Cardiovascular Disease in Transgenic (mREN2)27 Rats via Adrenocortical Steroid–Independent Mechanisms

Gian Paolo Rossi; Alfredo Sacchetto; Damiano Rizzoni; Sergio Bova; Enzo Porteri; Giuseppina Mazzocchi; Anna S. Belloni; Meltem Bahcelioglu; Gastone G. Nussdorfer; A. C. Pessina

We investigated the role of angiotensin II (Ang II) and endothelin-1 (ET-1) in transgenic (mREN2)27 rats, a model of the monogenic renin-dependent form of severe hypertension and cardiovascular disease. Four-week-old heterozygous male transgenic (mREN2)27 rats (n=24) were matched according to body weight (BW) and blood pressure (BP) and randomly allocated to receive a placebo (group P), the mixed endothelin type A and B receptor antagonist bosentan (100 mg/kg BW PO, group B), the Ang II type 1-specific receptor antagonist irbesartan (50 mg/kg BW PO, group I), or the endothelin type A-selective antagonist BMS-182874 (52 mg/kg BW PO, group BMS). After 4 weeks of treatment, during which BW and BP were measured weekly, animals were euthanized, and the heart, left ventricle, right ventricle, adrenal gland, brain, and kidney were weighed. The plasma levels of adrenocortical steroids were measured by high-performance liquid chromatography. The tension responses of ET-free segments of the thoracic aorta to 5 x 10(-6) mmol/L phenylephrine, 60 mmol/L KCl, and cumulative doses of ET-1 were assessed. The density of ET-1 receptor subtypes in the aorta and vascular structural changes in the mesenteric arterioles (100 to 200 microm ID) were also measured with autoradiography and myography, respectively. Compared with all other groups, group I rats showed significantly (P<0.001) lower systolic BP (group I, 161+/-8 mm Hg; group P, 269+/-23 mm Hg; group B, 275+/-17 mm Hg; and group BMS, 254+/-21 mm Hg), left ventricular weight (2.28+/-0.15 versus 3. 71+/-0.26, 3.38+/-0.27, and 3.96+/-0.51 mg/g BW, respectively), tension responses to vasoconstrictors, and normalized media thickness of the mesenteric arterioles (22.3+/-0.6 versus 25.3+/-0.5, 25.5+/-0.7, and 24.1+/-1.5 microm, respectively). Compared with levels in group P (78+/-25 pmol/mL), plasma aldosterone levels were significantly decreased in group B (51+/-11 pmol/mL) and group I (40+/-16 pmol/mL). Thus, endogenous ET-1 and Ang II contribute to the regulation of aldosterone, but only Ang II is crucial for the development of hypertension and related target organ damage via the Ang II type 1 receptor. Endogenous Ang II does not appear to enhance cardiovascular production of ET-1 in this model of hypertension within the time span of our experiment.

Collaboration


Dive into the Anna S. Belloni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge