Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna V. Goropashnaya is active.

Publication


Featured researches published by Anna V. Goropashnaya.


Molecular & Cellular Proteomics | 2010

Shotgun Proteomics Analysis of Hibernating Arctic Ground Squirrels

Chunxuan Shao; Yuting Liu; Hongqiang Ruan; Ying Li; Haifang Wang; Franziska Kohl; Anna V. Goropashnaya; Vadim B. Fedorov; Rong Zeng; Brian M. Barnes; Jun Yan

Mammalian hibernation involves complex mechanisms of metabolic reprogramming and tissue protection. Previous gene expression studies of hibernation have mainly focused on changes at the mRNA level. Large scale proteomics studies on hibernation have lagged behind largely because of the lack of an adequate protein database specific for hibernating species. We constructed a ground squirrel protein database for protein identification and used a label-free shotgun proteomics approach to analyze protein expression throughout the torpor-arousal cycle during hibernation in arctic ground squirrels (Urocitellus parryii). We identified more than 3,000 unique proteins from livers of arctic ground squirrels. Among them, 517 proteins showed significant differential expression comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1–2 months after hibernation had ended (non-hibernating). Consistent with changes at the mRNA level shown in a previous study on the same tissue samples, proteins involved in glycolysis and fatty acid synthesis were significantly underexpressed at the protein level in both late torpid and early aroused animals compared with non-hibernating animals, whereas proteins involved in fatty acid catabolism were significantly overexpressed. On the other hand, when we compared late torpid and early aroused animals, there were discrepancies between mRNA and protein levels for a large number of genes. Proteins involved in protein translation and degradation, mRNA processing, and oxidative phosphorylation were significantly overexpressed in early aroused animals compared with late torpid animals, whereas no significant changes at the mRNA levels between these stages had been observed. Our results suggest that there is substantial post-transcriptional regulation of proteins during torpor-arousal cycles of hibernation.


Molecular Ecology | 2007

Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia

Vadim B. Fedorov; Anna V. Goropashnaya; G. G. Boeskorov; Joseph A. Cook

The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south–north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.


Physiological Genomics | 2009

Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus)

Vadim B. Fedorov; Anna V. Goropashnaya; Øivind Tøien; Nathan C. Stewart; Andrew Y. Gracey; Celia Chang; Shizhen Qin; Geo Pertea; John Quackenbush; Louise C. Showe; Michael K. Showe; Bert B. Boyer; Brian M. Barnes

We conducted a large-scale gene expression screen using the 3,200 cDNA probe microarray developed specifically for Ursus americanus to detect expression differences in liver and skeletal muscle that occur during winter hibernation compared with animals sampled during summer. The expression of 12 genes, including RNA binding protein motif 3 (Rbm3), that are mostly involved in protein biosynthesis, was induced during hibernation in both liver and muscle. The Gene Ontology and Gene Set Enrichment analysis consistently showed a highly significant enrichment of the protein biosynthesis category by overexpressed genes in both liver and skeletal muscle during hibernation. Coordinated induction in transcriptional level of genes involved in protein biosynthesis is a distinctive feature of the transcriptome in hibernating black bears. This finding implies induction of translation and suggests an adaptive mechanism that contributes to a unique ability to reduce muscle atrophy over prolonged periods of immobility during hibernation. Comparing expression profiles in bears to small mammalian hibernators shows a general trend during hibernation of transcriptional changes that include induction of genes involved in lipid metabolism and carbohydrate synthesis as well as depression of genes involved in the urea cycle and detoxification function in liver.


Molecular Ecology | 2004

Limited phylogeographical structure across Eurasia in two red wood ant species Formica pratensis and F. lugubris (Hymenoptera, Formicidae)

Anna V. Goropashnaya; Vadim B. Fedorov; Bernhard Seifert; Pekka Pamilo

The phylogeography and demographic history of two closely related species of the red wood ant (Formica pratensis and F. lugubris) were examined across Eurasia. The phylogeny based on a 1.5‐kilobase mitochondrial DNA fragment, including the cytochrome b gene and part of the ND6 gene, showed one phylogeographical division in F. pratensis. This division (0.7% of nucleotide divergence) suggests postglacial colonization of western Europe and of a wide area ranging from Sweden on the west to Lake Baikal on the east from separate forest refugia. In two localities, mitochondrial DNA has been transferred from F. lugubris to F. pratensis and all the individuals of F. pratensis sampled from the Pyrenees had haplotypes clustering in the lugubris clade. No phylogeographical divisions were detected in F. lugubris. Comparison of species‐wide phylogeography between the two sympatrically distributed species of ant demonstrates a difference in phylogeographical structure that implies different vicariant histories. However, over most of the species’ distribution ranges, similar signs of demographic expansion predating the last glaciation and the lack of phylogeographical structure were found in both the eastern phylogroup of F. pratensis and F. lugubris. This finding is highly consistent with the results reported for all other boreal forest animal species studied to date in Eurasia. Contraction of the distribution range of each species to a single refugial area at different times during the late Pleistocene and a subsequent population expansion seem to be an explanation for the lack of phylogeographical structure across most of Eurasia in species that are ecologically associated with the boreal forest.


BMC Genomics | 2011

Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)

Vadim B. Fedorov; Anna V. Goropashnaya; Øivind Tøien; Nathan C. Stewart; Celia Chang; Haifang Wang; Jun Yan; Louise C. Showe; Michael K. Showe; Brian M. Barnes

BackgroundHibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals.ResultsWe identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways.ConclusionsOur findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.


Molecular Ecology | 2011

Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

Andrew G. Hope; Eric Waltari; Vadim B. Fedorov; Anna V. Goropashnaya; Sandra L. Talbot; Joseph A. Cook

Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.


BMC Genomics | 2013

Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes

Yichi Xu; Chunxuan Shao; Vadim B. Fedorov; Anna V. Goropashnaya; Brian M. Barnes; Jun Yan

BackgroundMammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear.ResultsWe identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation.ConclusionsIn this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions.


PLOS ONE | 2012

Phylogenetic relationships of Palaearctic Formica species (Hymenoptera, Formicidae) based on mitochondrial cytochrome B sequences.

Anna V. Goropashnaya; Vadim B. Fedorov; Bernhard Seifert; Pekka Pamilo

Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.


Functional & Integrative Genomics | 2012

Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes

Vadim B. Fedorov; Anna V. Goropashnaya; Øivind Tøien; Nathan C. Stewart; Celia Chang; Haifang Wang; Jun Yan; Louise C. Showe; Michael K. Showe; Seth W. Donahue; Brian M. Barnes

Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.


Human Heredity | 2009

Analysis of 30 Genes (355 SNPS) Related to Energy Homeostasis for Association with Adiposity in European-American and Yup'ik Eskimo Populations

Wendy K. Chung; Amit Patki; Naoki Matsuoka; Bert B. Boyer; Nianjun Liu; Solomon K. Musani; Anna V. Goropashnaya; Perciliz L. Tan; Nicholas Katsanis; Stephen B. Johnson; Peter K. Gregersen; David B. Allison; Rudolph L. Leibel; Hemant K. Tiwari

Objective: Human adiposity is highly heritable, but few of the genes that predispose to obesity in most humans are known. We tested candidate genes in pathways related to food intake and energy expenditure for association with measures of adiposity. Methods: We studied 355 genetic variants in 30 candidate genes in 7 molecular pathways related to obesity in two groups of adult subjects: 1,982 unrelated European Americans living in the New York metropolitan area drawn from the extremes of their body mass index (BMI) distribution and 593 related Yup’ik Eskimos living in rural Alaska characterized for BMI, body composition, waist circumference, and skin fold thicknesses. Data were analyzed by using a mixed model in conjunction with a false discovery rate (FDR) procedure to correct for multiple testing. Results: After correcting for multiple testing, two single nucleotide polymorphisms (SNPs) in Ghrelin (GHRL) (rs35682 and rs35683) were associated with BMI in the New York European Americans. This association was not replicated in the Yup’ik participants. There was no evidence for gene × gene interactions among genes within the same molecular pathway after adjusting for multiple testing via FDR control procedure. Conclusion: Genetic variation in GHRL may have a modest impact on BMI in European Americans.

Collaboration


Dive into the Anna V. Goropashnaya's collaboration.

Top Co-Authors

Avatar

Vadim B. Fedorov

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Brian M. Barnes

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Jun Yan

CAS-MPG Partner Institute for Computational Biology

View shared research outputs
Top Co-Authors

Avatar

Nathan C. Stewart

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Øivind Tøien

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Bernhard Seifert

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haifang Wang

CAS-MPG Partner Institute for Computational Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge