Øivind Tøien
University of Alaska Fairbanks
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Øivind Tøien.
Science | 2011
Øivind Tøien; John E. Blake; Dale M. Edgar; Dennis A. Grahn; H. Craig Heller; Brian M. Barnes
Hibernating black bears suppress their metabolic rate to 25% of normal, but only slightly reduce their body temperature. Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Michael J. Sheriff; G. Jim Kenagy; Melanie M. Richter; Trixie N. Lee; Øivind Tøien; Franziska Kohl; C. Loren Buck; Brian M. Barnes
Ecologists need an empirical understanding of physiological and behavioural adjustments that animals can make in response to seasonal and long-term variations in environmental conditions. Because many species experience trade-offs between timing and duration of one seasonal event versus another and because interacting species may also shift phenologies at different rates, it is possible that, in aggregate, phenological shifts could result in mismatches that disrupt ecological communities. We investigated the timing of seasonal events over 14 years in two Arctic ground squirrel populations living 20 km apart in Northern Alaska. At Atigun River, snow melt occurred 27 days earlier and snow cover began 17 days later than at Toolik Lake. This spatial differential was reflected in significant variation in the timing of most seasonal events in ground squirrels living at the two sites. Although reproductive males ended seasonal torpor on the same date at both sites, Atigun males emerged from hibernation 9 days earlier and entered hibernation 5 days later than Toolik males. Atigun females emerged and bred 13 days earlier and entered hibernation 9 days earlier than those at Toolik. We propose that this variation in phenology over a small spatial scale is likely generated by plasticity of physiological mechanisms that may also provide individuals the ability to respond to variation in environmental conditions over time.
The Journal of Neuroscience | 2011
Tulasi R. Jinka; Øivind Tøien; Kelly L. Drew
Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown, although the CNS is a key regulator of torpor. Seasonal hibernators, such as the arctic ground squirrel (AGS), display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study, we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGSs at different times of the year while monitoring the rate of O2 consumption and core body temperature as indicators of torpor. The A1 antagonist cyclopentyltheophylline reversed spontaneous entrance into torpor. The adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA) induced torpor in six of six AGSs tested during the mid-hibernation season, two of six AGSs tested early in the hibernation season, and none of the six AGSs tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A1AR activation; the A3AR agonist 2-Cl-IB MECA failed to induce torpor, and the A2aR antagonist MSX-3 failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A1AR activation and requires a seasonal switch in the sensitivity of purinergic signaling.
Physiological Genomics | 2009
Vadim B. Fedorov; Anna V. Goropashnaya; Øivind Tøien; Nathan C. Stewart; Andrew Y. Gracey; Celia Chang; Shizhen Qin; Geo Pertea; John Quackenbush; Louise C. Showe; Michael K. Showe; Bert B. Boyer; Brian M. Barnes
We conducted a large-scale gene expression screen using the 3,200 cDNA probe microarray developed specifically for Ursus americanus to detect expression differences in liver and skeletal muscle that occur during winter hibernation compared with animals sampled during summer. The expression of 12 genes, including RNA binding protein motif 3 (Rbm3), that are mostly involved in protein biosynthesis, was induced during hibernation in both liver and muscle. The Gene Ontology and Gene Set Enrichment analysis consistently showed a highly significant enrichment of the protein biosynthesis category by overexpressed genes in both liver and skeletal muscle during hibernation. Coordinated induction in transcriptional level of genes involved in protein biosynthesis is a distinctive feature of the transcriptome in hibernating black bears. This finding implies induction of translation and suggests an adaptive mechanism that contributes to a unique ability to reduce muscle atrophy over prolonged periods of immobility during hibernation. Comparing expression profiles in bears to small mammalian hibernators shows a general trend during hibernation of transcriptional changes that include induction of genes involved in lipid metabolism and carbohydrate synthesis as well as depression of genes involved in the urea cycle and detoxification function in liver.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2009
Shawna Karpovich; Øivind Tøien; C. Loren Buck; Brian M. Barnes
Arctic ground squirrels overwintering in northern Alaska experience average soil temperature of −10°C. To examine energetic costs of arousing from hibernation under arctic compared to temperate conditions, captive ground squirrels were maintained in ambient temperatures (Ta) of 2, −5 and −12°C. Rates of oxygen consumption and carbon dioxide production were used to estimate metabolic rate and fuel use during the three phases of arousal episodes: rewarming, euthermia, and recooling. Respiratory quotient comparisons suggest exclusive use of lipid during rewarming and mixed fuel use during euthermia. Animals rewarming from torpor at Ta −12°C took longer, consumed more oxygen, and attained higher peak rates of oxygen consumption when compared to 2°C. Ta had no significant effect on cost or duration of the euthermic phase. Animals recooled faster at −12°C than at 2°C, but total oxygen consumption was not different. Ta had no significant effect on the total cost of arousal episodes when all three phases are included. Arousal episodes account for 86% of estimated costs of a complete hibernation cycle including torpor when at 2°C and only 23% at −12°C. Thus, due to the higher costs of steady-state metabolism during torpor, proportional metabolic costs of arousal episodes at Ta characteristic of the Arctic are diminished compared to relative costs of arousals in more temperate conditions.
The Journal of Experimental Biology | 2005
Valerie A. Bennett; Todd Sformo; Kent R. Walters; Øivind Tøien; Kennan Jeannet; Ronald Hochstrasser; Qingfeng Pan; Anthony S. Serianni; Brian M. Barnes; John G. Duman
SUMMARY The beetle Cucujus clavipes is found in North America over a broad latitudinal range from North Carolina (latitude ∼35°N) to near tree line in the Brooks Range in Alaska (latitude, ∼67°30′ N). The cold adaptations of populations from northern Indiana (∼41°45′ N) and Alaska were compared and, as expected, the supercooling points (the temperatures at which they froze) of these freeze-avoiding insects were significantly lower in Alaska insects. Both populations produce glycerol, but the concentrations in Alaska larvae were much higher than in Indiana insects (∼2.2 and 0.5 mol l–1, respectively). In addition, both populations produce antifreeze proteins. Interestingly, in the autumn both populations have the same approximate level of hemolymph thermal hysteresis, indicative of antifreeze protein activity, suggesting that they synthesize similar amounts of antifreeze protein. A major difference is that the Alaska larvae undergo extreme dehydration in winter wherein water content decreases from 63–65% body water (1.70–1.85 g H2O g–1 dry mass) in summer to 28–40% body water (0.40–0.68 g H2O g–1 dry mass) in winter. These 2.5–4.6-fold reductions in body water greatly increase the concentrations of antifreeze in the Alaska insects. Glycerol concentrations would increase to 7–10 mol l–1 while thermal hysteresis increased to nearly 13°C (the highest ever measured in any organism) in concentrated hemolymph. By contrast, Indiana larvae do not desiccate in winter. The Alaska population also undergoes a diapause while insects from Indiana do not. The result of these, and likely additional, adaptations is that while the mean winter supercooling points of Indiana larvae were approximately –23°C, those of Alaska larvae were –35 to– 42°C, and at certain times Alaska C. clavipes did not freeze when cooled to –80°C.
PLOS ONE | 2011
Jens Stieler; Torsten Bullmann; Franziska Kohl; Øivind Tøien; Martina K. Brückner; Wolfgang Härtig; Brian M. Barnes; Thomas Arendt
Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimers disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational changes of highly phosphorylated tau protein that are typically related to neuropathological alterations. The particular hibernation characteristics of black bears with a continuous torpor period and an only slightly decreased body temperature, therefore, potentially reflects the limitations of this adaptive reaction pattern and, thus, might indicate a transitional state of a physiological process.
BMC Genomics | 2011
Vadim B. Fedorov; Anna V. Goropashnaya; Øivind Tøien; Nathan C. Stewart; Celia Chang; Haifang Wang; Jun Yan; Louise C. Showe; Michael K. Showe; Brian M. Barnes
BackgroundHibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals.ResultsWe identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways.ConclusionsOur findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.
Physiological and Biochemical Zoology | 2013
Michael J. Sheriff; Robert W. Fridinger; Øivind Tøien; Brian M. Barnes; C. Loren Buck
Hibernating mammals become sequestered and cease foraging during prolonged seasonal periods of reduced or unpredictable food availability and instead rely on cached food and/or endogenous reserves of fat and protein accumulated during the previous active season. The gain in weight is due to increased food consumption, but it also has been hypothesized that hibernators maximize rates of fattening by decreasing costs of maintenance before weight gain, reflected in reduced resting metabolic rate (RMR). We recorded repeated measures of total body, lean, and fat mass in individual adult male and female arctic ground squirrels across their active season and found that squirrels increased body mass by 42% (males) and 62% (females). This gain was achieved through a 17% increase in lean mass and a 7–8-fold increase in fat mass; however, mass gain was not linear and patterns differed between sexes. Contrary to our hypothesis, decreases in RMR were not associated with rapid mass gain. We found RMR of males increased (whole-animal RMR or lean-mass-specific RMR) or remained constant (mass-specific RMR) for most of the active season and decreased only after the majority of mass had been gained. In females, although RMR (whole-animal, mass-specific, and lean-mass RMR) generally decreased across the active season, the greatest decrease occurred late in the active season after the majority of mass had been gained. In conclusion, arctic ground squirrels do not trade off metabolism to facilitate rates of weight gain before hibernation, but they do use energy sparing strategies before hibernation that help maintain peak mass.
Journal of Mammalogy | 2012
Charles T. Robbins; Claudia López-Alfaro; Karyn D. Rode; Øivind Tøien; O. Lynne Nelson
Abstract Global warming has the potential to reduce arctic sea ice and thereby increase the length of summer–fall fasting when polar bears (Ursus maritimus) lose access to most marine mammals. To evaluate the consequences of such changes, we compared the cost of fasting by polar bears with hibernation by brown bears (U. arctos), American black bears (U. americanus), and polar bears and made projections about tissue reserves polar bears will need to survive and reproduce as fasts become longer. Hibernating polar bears expend energy at the same rate per unit mass as do brown bears and black bears. However, daily mass losses, energy expenditures, and the losses of lean mass are much higher in fasting, active polar bears than in hibernating bears. The average pregnant polar bear living around Hudson Bay during the 1980s and 1990s could fast for 10.0 ± 2.3 months (X̄ ± SD), and the average lactating female with cubs born during the preceding winter could fast for 4.2 ± 1.9 months. Thus, some pregnant or lactating females with lower levels of body fat content were already approaching or beyond the constraint of being able to produce cubs and survive the required 8 months of fasting if producing new offspring or 4 months if accompanied by older offspring. Pregnant or lactating females and their dependent offspring have the most tenuous future as global warming occurs. Thus, we predict a significant reduction in productivity with even modest increases in global warming for polar bears living in the very southern part of their range and are concerned about more northern populations depending on their ability to accumulate increasing amounts of fat.